【題目】已知:在△ABC中,AC=BC,點(diǎn)D在△ABC外部,且∠ACB+∠ADB=180°,連接AB、CD.
(1)如圖1,當(dāng)∠ACB=90°時(shí),則∠ADC=______°.
(2)如圖2,當(dāng)∠ACB=60°時(shí),求證:DC平分∠ADB.
【答案】(1)45°;(2)證明見(jiàn)解析.
【解析】
(1)延長(zhǎng)AD和CB,相交于點(diǎn)E,如圖1,先判斷△ABC為等腰直角三角形得到∠ABC=45°,再利用等角的余角可得∠BDE=∠ACB,則可判斷△EBD∽△EAC,所以ED:EC=EB:EA,則ED:EB=EC:EA,加上∠DEC=∠BEA,則可判斷△EDC∽△EBA,所以∠2=∠1,然后利用三角形內(nèi)角和定理可得∠ADC=∠ABC=45°;
(2)延長(zhǎng)AD和CB,相交于點(diǎn)E,如圖2,先判斷△ABC為等邊三角形得到∠ABC=60°,與(1)一樣可證明∠2=∠1,則∠ADC=∠ABC=60°,再計(jì)算出∠BDC=60°,于是可判斷DC平分∠ADB.
(1)延長(zhǎng)AD和CB,相交于點(diǎn)E,如圖1,∵AC=BC,∠ACB=90°,
∴△ABC為等腰直角三角形,
∴∠ABC=45°,
∵∠ACB+∠ADB=180°,
而∠BDE+∠ADB=180°,∴∠BDE=∠ACB,
而∠BED=∠AEC,∴△EBD∽△EAC,
∴ED:EC=EB:EA,
∴ED:EB=EC:EA,
而∠DEC=∠BEA,∴△EDC∽△EBA,
∴∠2=∠1,
∴∠ADC=∠ABC=45°,
(2)證明:延長(zhǎng)AD和CB,相交于點(diǎn)E,如圖2,
∵AC=BC,∠ACB=60°,
∴△ABC為等邊三角形,
∴∠ABC=60°,
與(1)一樣可證明△EDC∽△EBA,
∴∠2=∠1,
∴∠ADC=∠ABC=60°,
而∠ADB=180°-∠ACB=60°=120°,
∴∠BDC=60°,
∴DC平分∠ADB.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于函數(shù)y=﹣2x+1,下列結(jié)論正確的是( 。
A.y值隨x值的增大而增大
B.它的圖象與x軸交點(diǎn)坐標(biāo)為(0,1)
C.它的圖象必經(jīng)過(guò)點(diǎn)(﹣1,3)
D.它的圖象經(jīng)過(guò)第一、二、三象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+3x+1﹣m=0有兩個(gè)不相等的實(shí)數(shù)根.
(1)求m的取值范圍;
(2)若m為負(fù)整數(shù),求此時(shí)方程的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,梯形ABCD中,AB∥CD,AB=14,AD= 4 , CD=7.直線l經(jīng)過(guò)A,D兩點(diǎn),且sin∠DAB= . 動(dòng)點(diǎn)P在線段AB上從點(diǎn)A出發(fā)以每秒2個(gè)單位的速度向點(diǎn)B運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā)以每秒5個(gè)單位的速度沿B→C→D的方向向點(diǎn)D運(yùn)動(dòng),過(guò)點(diǎn)P作PM垂直于AB,與折線A→D→C相交于點(diǎn)M,當(dāng)P,Q兩點(diǎn)中有一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)P,Q運(yùn)動(dòng)的時(shí)間為t秒(t>0),△MPQ的面積為S.
(1)求腰BC的長(zhǎng);
(2)當(dāng)Q在BC上運(yùn)動(dòng)時(shí),求S與t的函數(shù)關(guān)系式;
(3)在(2)的條件下,是否存在某一時(shí)刻t,使得△MPQ的面積S是梯形ABCD面積的?若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說(shuō)明理由;
(4)隨著P,Q兩點(diǎn)的運(yùn)動(dòng),當(dāng)點(diǎn)M在線段DC上運(yùn)動(dòng)時(shí),設(shè)PM的延長(zhǎng)線與直線l相交于點(diǎn)N,試探究:當(dāng)t為何值時(shí),△QMN為等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人進(jìn)行羽毛球比賽,羽毛球飛行的路線為拋物線的一部分,如圖,甲在點(diǎn)上正方的處發(fā)出一球,羽毛球飛行的高度與水平距離之間滿足函數(shù)表達(dá)式.已知點(diǎn)與球網(wǎng)的水平距離為,球網(wǎng)的高度為.
(1)當(dāng)時(shí),①求的值.②通過(guò)計(jì)算判斷此球能否過(guò)網(wǎng).
(2)若甲發(fā)球過(guò)網(wǎng)后,羽毛球飛行到點(diǎn)的水平距離為,離地面的高度為的處時(shí),乙扣球成功,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)B在線段AC上,點(diǎn)E在線段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M,N分別是AE,CD的中點(diǎn)。試探索BM和BN的關(guān)系,并證明你的結(jié)論。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC≌Rt△CED(∠ACB=∠CDE=90°),點(diǎn)D在BC上,AB與CE相交于點(diǎn)F
(1) 如圖1,直接寫出AB與CE的位置關(guān)系
(2) 如圖2,連接AD交CE于點(diǎn)G,在BC的延長(zhǎng)線上截取CH=DB,射線HG交AB于K,求證:HK=BK
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校與圖書館在同一條筆直道路上,甲從學(xué)校去圖書館,乙從圖書館回學(xué)校,甲、乙兩人都勻速步行且同時(shí)出發(fā),乙先到達(dá)目的地,兩人之間的距離(米)與時(shí)間(分鐘)之間的函數(shù)關(guān)系如圖所示,則下列說(shuō)法正確的是( )
①當(dāng)分鐘時(shí)甲乙兩人相遇;
②甲的速度為40米/分鐘;
③乙的速度為50米/分鐘;
④乙到達(dá)目的地時(shí),甲離目的地的距離為800米.
A.①②B.③④C.①②④D.①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A為某旅游景區(qū)的最佳觀景點(diǎn),游客可從B處乘坐纜車先到達(dá)小觀景平臺(tái)DE觀景,然后再由E處繼續(xù)乘坐纜車到達(dá)A處,返程時(shí)從A處乘坐升降電梯直接到達(dá)C處,已知:AC⊥BC于C,DE∥BC,BC=110米,DE=9米,BD=60米,α=32°,β=68°,求AC的高度.(參考數(shù)據(jù):sin32°≈0.53;cos32°≈0.85;tan32°≈0.62;sin68°≈0.93;cos68°≈0.37;tan68°≈2.48)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com