【題目】某商場購進一種每件價格為100元的新商品,在商場試銷發(fā)現(xiàn):銷售單價x(元/件)與每天銷售量y(件)之間滿足如圖所示的關(guān)系:
(1)求出y與x之間的函數(shù)關(guān)系式;
(2)寫出每天的利潤W與銷售單價x之間的函數(shù)關(guān)系式;若你是商場負責人,會將售價定為多少,來保證每天獲得的利潤最大,最大利潤是多少?
【答案】(1)y=﹣x+180;(2)y=(x﹣100)(﹣x+180)售價定為140元/件時,每天最大利潤W=1600元.
【解析】(1)設(shè)y與x之間的函數(shù)關(guān)系式為y=kx+b(k≠0),根據(jù)所給函數(shù)圖象列出關(guān)于kb的關(guān)系式,求出k、b的值即可;
(2)把每天的利潤W與銷售單價x之間的函數(shù)關(guān)系式化為二次函數(shù)頂點式的形式,由此關(guān)系式即可得出結(jié)論.
解:(1)設(shè)y與x之間的函數(shù)關(guān)系式為y=kx+b(k≠0),由所給函數(shù)圖象可知,
,解得.
故y與x的函數(shù)關(guān)系式為y=﹣x+180;
(2)∵y=﹣x+180,
∴W=(x﹣100)y=(x﹣100)(﹣x+180)
=﹣x2+280x﹣18000
=﹣(x﹣140)2+1600,
∵a=﹣1<0,
∴當x=140時,W最大=1600,
∴售價定為140元/件時,每天最大利潤W=1600元.
科目:初中數(shù)學 來源: 題型:
【題目】在四邊形ABCD中,對角線AC與BD交于點O,E是OC上任意一點,AG⊥BE于點G,交直線BD于點F.
(1)如圖1,若四邊形ABCD是正方形,判斷AF與BE的數(shù)量關(guān)系:AF與BE的數(shù)量關(guān)系是 ;
(2)如圖2,若四邊形ABCD是菱形,∠ABC=120°,求的值;
(3)如圖3,若四邊形ABCD中,AC⊥BD,∠ABC=α,∠DBC=β,請你補全圖形,并直接寫出:= (用含α,β的式子表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】完成下列填空.如右圖,已知AD⊥BC,EF⊥BC,∠1=∠2. 求證: DG∥BA.
證明:∵AD⊥BC,EF⊥BC(已知)
∴∠EFB=∠ADB=90° ( )
∴ ∥ ( )
∴∠1=∠BAD ( )
又∵∠1=∠2 (已知)
∴ (等量代換)
∴DG∥BA. ( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,ABCD中,E、F分別是邊AB、CD的中點.
(1)求證:四邊形EBFD是平行四邊形;
(2)若AD=AE=2,∠A=60°,求四邊形EBFD的周長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com