(1)求證:四邊形AECF是平行四邊形;
(2)若BC=10,∠BAC=90°,且四邊形AECF是菱形,求BE的長(zhǎng).

證明:(1)證明:∵四邊形ABCD是平行四邊形,
∴AD∥BC,且AD=BC,………………1分
∴AF∥EC,
∵BE=DF,
∴AF=EC,
∴四邊形AECF是平行四邊形.………………3分
(2)解:∵四邊形AECF是菱形,
∴AE=EC,
∴∠1=∠2,………………4分
∵∠3=90°-∠2,∠4=90°-∠1,
∴∠3=∠4,
∴AE=BE,………………5分
∴BE=AE=CE=1/2BC=5.………………6分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2009•鄭州模擬)如圖,ABCD是矩形紙片,翻折∠B、∠D,使BC、AD恰好落在AC上.設(shè)F、H分別是B、D落在AC上的兩點(diǎn),E、G分別是折痕CE、AG與AB、CD的交點(diǎn).
(1)求證:四邊形AECG是平行四邊形:
(2)若AB=8cm,BC=6cm,求線段EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,將?ABCD的邊BA延長(zhǎng)到點(diǎn)E,使AE=AB,連接EC,交AD于點(diǎn)F,連接AC、ED.
(1)求證:四邊形ACDE是平行四邊形;
(2)若∠AFC=2∠B,求證:四邊形ACDE是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知四邊形ABCD中,E、F、G、H分別為AB、BC、CD、DA的中點(diǎn),
①求證:四邊形EFGH是平行四邊形.
②探索下列問(wèn)題,并選擇一個(gè)進(jìn)行證明.
a.原四邊形ABCD的對(duì)角線AC、BD滿足
AC⊥BD
AC⊥BD
時(shí),四邊形EFGH是矩形.
b.原四邊形ABCD的對(duì)角線AC、BD滿足
AC=BD
AC=BD
時(shí),四邊形EFGH是菱形.
c.原四邊形ABCD的對(duì)角線AC、BD滿足
AC⊥BD且AC=BD
AC⊥BD且AC=BD
時(shí),四邊形EFGH是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知B′C′∥BC,C′D′∥CD,D′E′∥DE.
(1)求證:四邊形BCDE位似于四邊形B′C′D′E′.
(2)若
AB′B′B
=3
,S四邊形BCDE=20,求S四邊形B′C′D′E′

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:在矩形ABCD中,AB=2,E為BC邊上的一點(diǎn),沿直線DE將矩形折疊,使C點(diǎn)落在AB邊上的C點(diǎn)處.過(guò)C′作C′H⊥DC,C′H分別交DE、DC于點(diǎn)G、H,連接CG、CC′,CC′交GE于點(diǎn)F.
(1)求證:四邊形CGC′E為菱形;
(2)設(shè)sin∠CDE=x,并設(shè)y=
CE+DGDE
,試將y表示成x的函數(shù);
(3)當(dāng)(2)中所求得的函數(shù)的圖象達(dá)到最高點(diǎn)時(shí),求BC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案