【題目】已知關(guān)于的一元二次方程x2-4x+k+1=0
(1)若=-1是方程的一個根,求k值和方程的另一根;
(2)設(shè)x1,x2是關(guān)于x的方程x2-4x+k+1=0的兩個實數(shù)根,是否存在實數(shù)k,使得x1x2>x1+x2成立?請說明理由.
【答案】(1)k= -6 ,方程的另一根是5.
(2)不存在.理由見解析.
【解析】
試題分析:(1)把=-1代入方程即可求出k的值,利用根與系數(shù)的關(guān)系可求出方程的另一根;(2)利用根與系數(shù)的關(guān)系可得x1+x2=4,x1x2=k+1,代入x1x2>x1+x2求出k的取值范圍,然后利用Δ≥0,求出k的取值范圍,比較即可.
試題解析:(1)把=-1代入方程x2-4x+k+1=0 ,得1+4+k+1=0 ,解得k= -6 ,設(shè)另一個根為x,則x+(-1)=4,所以x=5,即方程的另一根是5.(4分)
( 2 )不存在.理由:由題意得Δ=16-4(k+1)≥0,解得k≤3.∵x1,x2是一元二次方程的兩個實數(shù)根,∴x1+x2=4,x1x2=k+1,由x1x2>x1+x2得k+1>4,∴k>3,∴不存在實數(shù)k使得x1x2>x1+x2成立.(4分)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一家商店進(jìn)行門店升級需要裝修,裝修期間暫停營業(yè),若請甲乙兩個裝修組同時施工,8天可以完成,需付費用共3520元;若先請甲組單獨做6天,再請乙組單獨做12天可以完成,需付費用3480元,問:
甲、乙兩組工作一天,商店各應(yīng)付多少錢?
已知甲組單獨完成需12天,乙組單獨完成需24天,單獨請哪個組,商店所需費用最少?
裝修完畢第二天即可正常營業(yè),且每天仍可盈利200元即裝修前后每天盈利不變,你認(rèn)為商店應(yīng)如何安排施工更有利?說說你的理由可用問的條件及結(jié)論
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等腰中,,,點,點分別是軸,軸上兩個動點,直角邊交軸于點,斜邊交軸于點.
(1)如圖①,當(dāng)?shù)妊?/span>運動到使點恰為中點時,連接,求證:;
(2)如圖②,當(dāng)?shù)妊?/span>運動到使時,點的橫坐標(biāo)為,.在軸上是否存在點,使為等腰三角形?若存在,請直接寫出點的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】勾股定理是數(shù)學(xué)史上非常重要的一個定理.早在多年以前,人們就開始對它進(jìn)行研究,至今已有幾百種證明方法.在歐幾里得編的《原本》中證明勾股定理的方法如下,請同學(xué)們仔細(xì)閱讀并解答相關(guān)問題:如圖,分別以的三邊為邊長,向外作正方形、、.
(1)連接、,求證:
(2)過點作的垂線,交于點,交于點.
①試說明四邊形與正方形的面積相等;
②請直接寫出圖中與正方形的面積相等的四邊形.
(3)由第(2)題可得:正方形的面積正方形的面積_______________的面積,即在中,__________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有甲、乙兩個箱子,其中甲箱內(nèi)有顆球,分別標(biāo)記號碼,且號碼為不重復(fù)的整數(shù),乙箱內(nèi)沒有球.已知小育從甲箱內(nèi)拿出顆球放入乙箱后,乙箱內(nèi)球的號碼的中位數(shù)為.若此時甲箱內(nèi)有顆球的號碼小于,有顆球的號碼大于,若他們的中位數(shù)都為,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】要建一個如圖所示的面積為300 的長方形圍欄,圍欄總長50m,一邊靠墻(墻長25m),
(1)求圍欄的長和寬;
(2)能否圍成面積為400 的長方形圍欄?如果能,求出該長方形的長和寬,如果不能請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛慢車和一輛快車沿相同的路線從A地到B地,所行駛的路程與時間的函數(shù)圖形如圖所示,下列說法正確的有( )
①快車追上慢車需6小時;②慢車比快車早出發(fā)2小時;③快車速度為46km/h;④慢車速度為46km/h; ⑤A、B兩地相距828km;⑥快車從A地出發(fā)到B地用了14小時
A. 2個B. 3個C. 4個D. 5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用一根長度為的細(xì)繩圍成一個等腰三角形.
(1)如果所圍等腰三角形的腰長是底邊長的2倍,則此時的底邊長度是多少?
(2)所圍成的等腰三角形的腰長不可能等于,請簡單說明原因.
(3)若所圍成的等腰三角形的腰長為,請求出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司購買了一批、型芯片,其中型芯片的單價比型芯片的單價少9元,已知該公司用3120元購買型芯片的條數(shù)與用4200元購買型芯片的條數(shù)相等.
(1)求該公司購買的、型芯片的單價各是多少元?
(2)若兩種芯片共購買了200條,且購買的總費用為6280元,求購買了多少條型芯片?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com