【題目】如圖,等腰三角形ABC底邊BC的長為4cm,面積是12cm2,腰AB的垂直平分線EF交AC于點F,若D為BC邊上的中點,M為線段EF上一動點,則△BDM的周長最短為______cm.
【答案】7.
【解析】試題分析:連接AD,由于△ABC是等腰三角形,點D是BC邊的中點,故AD⊥BC,再根據(jù)三角形的面積公式求出AD的長,再根據(jù)EF是線段AB的垂直平分線可知,點B關(guān)于直線EF的對稱點為點A,故AD的長為BM+MD的最小值,由此即可得出結(jié)論.
試題解析:連接AD,由于△ABC是等腰三角形,點D是BC邊的中點,故AD⊥BC,再根據(jù)三角形的面積公式求出AD的長,再根據(jù)EF是線段AB的垂直平分線可知,點B關(guān)于直線EF的對稱點為點A,故AD的長為BM+MD的最小值,由此即可得出結(jié)論.
試題解析:連接AD,
∵△ABC是等腰三角形,點D是BC邊的中點,
∴AD⊥BC,
∴S△ABC=BCAD=×4×AD=12,解得AD=6cm,
∵EF是線段AB的垂直平分線,
∴點B關(guān)于直線EF的對稱點為點A,
∴AD的長為BM+MD的最小值,
∴△BDM的周長最短=(BM+MD)+BD=AD+BC=6+×4=6+=8cm.
科目:初中數(shù)學 來源: 題型:
【題目】在由m×n(m×n>1)個小正方形組成的矩形網(wǎng)格中,研究它的一條對角線所穿過的小正方形個數(shù)f,
(1)當m、n互質(zhì)(m、n除1外無其他公因數(shù))時,觀察下列圖形并完成下表:
m | n | m+n | f |
1 | 2 | 3 | 2 |
1 | 3 | 4 | 3 |
2 | 3 | 5 | 4 |
2 | 5 | 7 | 6 |
3 | 4 | 7 | 6 |
猜想:當m、n互質(zhì)時,在m×n的矩形網(wǎng)格中,一條對角線所穿過的小正方形的個數(shù)f與m、n的關(guān)系式是 (不需要證明);
(2)當m、n不互質(zhì)時,請畫圖驗證你猜想的關(guān)系式是否依然成立.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店銷售10臺A型和20臺B型電腦的利潤為4000元,銷售20臺A型和10臺B型電腦的利潤為3500元.
(1)求每臺A型電腦和B型電腦的銷售利潤;
(2)該商店計劃一次購進兩種型號的電腦共100臺,其中B型電腦的進貨量不超過A型電腦的2倍,設(shè)購進A型電腦x臺,這100臺電腦的銷售總利潤為y元.
①求y關(guān)于x的函數(shù)關(guān)系式;
②該商店購進A型、B型電腦各多少臺,才能使銷售總利潤最大?
(3)實際進貨時,廠家對A型電腦出廠價下調(diào)m(0<m<100)元,且限定商店最多購進A型電腦70臺.若商店保持兩種電腦的售價不變,請你根據(jù)以上信息及(2)中條件,設(shè)計出使這100臺電腦銷售總利潤最大的進貨方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小華用若干個正方形和長方形準備拼成一個長方體的展開圖.拼完后,小華看來看去總覺得所拼圖形似乎存在問題.
(1)請你幫小華分析一下拼圖是否存在問題:若有多余塊,則把圖中多余部分涂黑;若還缺少,則直接在原圖中補全.
(2)若圖中的正方形邊長為2cm,長方形的長為3cm,寬為2cm,請直接寫出修正后所折疊而成的長方體的容積: _________ cm3.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC的三個頂點的坐標分別為A(﹣2,3)、B(﹣6,0),C(﹣1,0).
(1)將△ABC向右平移5個單位,再向下平移4個單位得△A1B1C1,圖中畫出△A1B1C1,平移后點A的對應(yīng)點A1的坐標是______.
(2)將△ABC沿x軸翻折△A2BC,圖中畫出△A2BC,翻折后點A對應(yīng)點A2坐標是______.
(3)將△ABC向左平移2個單位,則△ABC掃過的面積為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】今年入冬以來,我國持續(xù)大面積的霧霾天氣讓環(huán)保和健康問題成為焦點,某校學生會為了調(diào)查學生對霧霾天氣知識的了解程度,隨機抽取了該校的若干名學生進行調(diào)查,將調(diào)查結(jié)果分為四個等級:()非常了解,( )比較了解,( )很少了解,( )不了解,并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.
對霧霾天氣了解程度的條形統(tǒng)計圖 | 對霧霾天氣了解程度的扇形統(tǒng)計圖 |
根據(jù)統(tǒng)計圖提供的信息,解答下列問題:
()求被調(diào)查的學生人數(shù);并將條形統(tǒng)計圖補充完整.
()本次調(diào)查結(jié)果的“眾數(shù)”是__________.
()若該校有名學生,請你估計該校對霧霾天氣知識“不了解”的學生人數(shù),并請你用一句話告訴這些學生有關(guān)霧霾的知識.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如下圖,已知∠AOB=α,在射線OA、OB上分別取點OA1=OB1,連結(jié)A1B1,在B1A1、B1B上分別取點A2、B2,使B1B2= B1A2,連結(jié)A2 B2按此規(guī)律下去,記∠A2B1 B2=θ1,∠A3B2B3=θ2,,∠An+1Bn Bn+1=θn,則θ2016-θ2015的值為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com