如圖,在分別以A,BC為圓心,以為半徑畫弧,三條弧與邊AB所圍成的陰影部分面積為     。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

62、如圖所示,分別以四邊形的各個(gè)頂點(diǎn)為圓心,半徑為R作圓(這些圓互不相交),把這些圓與四邊形的公共部分(即圖中陰影部分)剪下來拼在一起,你有什么發(fā)現(xiàn)并用有關(guān)的數(shù)學(xué)知識進(jìn)行解釋.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在直角梯形ABCD中,∠C=90°,高CD=6cm(如圖1).動點(diǎn)P,Q同時(shí)從點(diǎn)B出發(fā),點(diǎn)P沿BA,AD,DC運(yùn)動到點(diǎn)C停止,點(diǎn)Q沿BC運(yùn)動到C點(diǎn)停止.兩點(diǎn)運(yùn)動時(shí)的速度都是1cm/s.而當(dāng)點(diǎn)P到達(dá)點(diǎn)A時(shí),點(diǎn)Q正好到達(dá)點(diǎn)C.設(shè)P,Q同時(shí)從點(diǎn)B出發(fā),經(jīng)過的時(shí)間為t(s)時(shí),△BPQ的面積為y(cm2)(如圖2).分別以x,y為橫、縱坐標(biāo)建立直角坐標(biāo)系,已知點(diǎn)P在AD邊上從A到D運(yùn)動時(shí),y與t的函數(shù)圖象是圖3中的線段MN.
(1)分別求出梯形中BA,AD的長度;
(2)寫出圖3中M,N兩點(diǎn)的坐標(biāo);
(3)分別寫出點(diǎn)P在BA邊上和DC邊上運(yùn)動時(shí),y與t的函數(shù)關(guān)系式(注明自變量的取值范圍),并在答題卷的圖4(放大了的圖3)中補(bǔ)全整個(gè)運(yùn)動中y關(guān)于t的函數(shù)關(guān)系的大致圖象.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

25、(1)如圖所示,分別以四邊形的四個(gè)頂點(diǎn)為圓心,半徑R作圓(這些圓互不相交),把這些圓與四邊形的公共部分(即圓中陰影部分)剪下來拼在一起,你有何發(fā)現(xiàn)?試用有關(guān)數(shù)學(xué)知識進(jìn)行解釋.
(2)若將(1)中的四邊形換成五邊形,則陰影部分的面積為多少?若換成六邊形呢?若換成n邊形呢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的長.
小萍同學(xué)靈活運(yùn)用軸對稱知識,將圖形進(jìn)行翻折變換如圖1.她分別以AB、AC為對稱軸,畫出△ABD、△ACD的軸對稱圖形,D點(diǎn)的對稱點(diǎn)為E、F,延長EB、FC相交于G點(diǎn),得到四邊形AEGF是正方形.設(shè)AD=x,利用勾股定理,建立關(guān)于x的方程模型,求出x的值.
(1)請你幫小萍求出x的值.
(2)參考小萍的思路,探究并解答新問題:
如圖2,在△ABC中,∠BAC=30°,AD⊥BC于D,AD=4.請你按照小萍的方法畫圖,得到四邊形AEGF,求△BGC的周長.(畫圖所用字母與圖1中的字母對應(yīng))
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊答案