如圖所示,在四邊形ABCD中,AD∥BC,AB⊥AC,AD⊥DC,∠B=45°,CD=2cm,求BC的長(zhǎng).
分析:由在四邊形ABCD中,AD∥BC,AB⊥AC,AD⊥DC,∠B=45°,易得△ACD與△ABC是等腰直角三角形,繼而求得BC的長(zhǎng).
解答:解:∵AB⊥AC,∠B=45°,
∴∠ACB=45°,
∴△ABC是等腰直角三角形,且AB=AC,
∵AD∥BC,
∴∠DAC=∠ACB=45°,
∵AD⊥DC,
∴△ADC是等腰直角三角形,
∵CD=2cm,
∴AC=
AD2+CD2
=2
2
(cm),
∴BC=
AB2+AC2
=4(cm).
點(diǎn)評(píng):此題考查了等腰直角三角形的性質(zhì)以及勾股定理.此題難度不大,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、如圖所示,在四邊形ABCD中,已知:AB:BC:CD:DA=2:2:3:1,且∠B=90°,求∠DAB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

11、如圖所示,在四邊形ABCD中,CB=CD,∠ABC=∠ADC=90°,∠BAC=35°,則∠BCD的度數(shù)為
110
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,在四邊形ABCD中,∠BAD=90°,∠B=75°,∠ADC=135°,AB=AD=
2
,E為BC中點(diǎn),則AE+DE長(zhǎng)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

9、如圖所示,在四邊形ABCD中,AD∥BC,要使四邊形ABCD成為平行四邊形還需要條件( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在四邊形ABCD中,∠A=90°,AB=9,BC=20,CD=25,AD=12,求四邊形ABCD的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案