在直角三角形中,若斜邊和斜邊上的中線(xiàn)的長(zhǎng)度之和為24cm,則斜邊的長(zhǎng)為
 
cm.
分析:根據(jù)直角三角形斜邊上中線(xiàn)得出AB=2CD,根據(jù)已知求出CD、AB即可.
解答:解:精英家教網(wǎng)
∵∠ACB=90°,CD是△ABC的斜邊AB的中線(xiàn),
∴AB=2CD,
∵AB+CD=24,
∴CD=
1
3
×24=8,
∴AB=2CD=16,
故答案為:16.
點(diǎn)評(píng):本題主要考查對(duì)直角三角形斜邊上的中線(xiàn)的理解和掌握,能熟練地運(yùn)用性質(zhì)進(jìn)行計(jì)算是解此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)在平面直角坐標(biāo)系中,現(xiàn)將一塊等腰直角三角板ABC放在第二象限,斜靠在兩坐標(biāo)軸上,且點(diǎn)A(0,2),點(diǎn)C(-1,0),如圖所示:拋物線(xiàn)y=ax2+ax-2經(jīng)過(guò)點(diǎn)B.
(1)求點(diǎn)B的坐標(biāo);
(2)求拋物線(xiàn)的解析式;
(3)在拋物線(xiàn)上是否還存在點(diǎn)P(點(diǎn)B除外),使△ACP仍然是以AC為直角邊的等腰直角三角形?若存在,求所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,現(xiàn)將一塊等腰直角三角板放在第一象限,斜靠在兩坐標(biāo)軸上,且精英家教網(wǎng)點(diǎn)A(0,2),點(diǎn)C(1,0),如圖所示,拋物線(xiàn)y=ax2-ax-2經(jīng)過(guò)點(diǎn)B.
(1)求點(diǎn)B的坐標(biāo);
(2)求拋物線(xiàn)的解析式;
(3)在拋物線(xiàn)上是否還存在點(diǎn)P(點(diǎn)B除外),使△ACP仍然是以AC為直角邊的等腰直角三角形?若存在,求所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,現(xiàn)將一塊腰長(zhǎng)為
5
的等腰直角三角板ABC放在第三象限,斜靠在兩坐標(biāo)軸上,且點(diǎn)A(0,-2),直角頂點(diǎn)C在x軸的負(fù)半軸上(如圖所示),拋物線(xiàn)y=ax2+ax+2經(jīng)過(guò)點(diǎn)B.
(1)點(diǎn)C的坐標(biāo)為
(-1,0)
(-1,0)
,點(diǎn)B的坐標(biāo)為
(-3,-1)
(-3,-1)

(2)求拋物線(xiàn)的解析式;
(3)在拋物線(xiàn)上是否還存在點(diǎn)P(點(diǎn)B除外),使△ACP仍然是以AC為直角邊的等腰直角三角形?若存在,求所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在平面直角坐標(biāo)系中,現(xiàn)將一張等腰直角三角形紙片ABC放在第二象限,斜靠在精英家教網(wǎng)兩坐標(biāo)軸上,點(diǎn)B的坐標(biāo)為(-3,1),且拋物線(xiàn)y=ax2+ax-4a經(jīng)過(guò)點(diǎn)B.
(Ⅰ)求拋物線(xiàn)的解析式;
(Ⅱ)求點(diǎn)A和點(diǎn)C的坐標(biāo);
(Ⅲ)以AC所在直線(xiàn)為對(duì)稱(chēng)軸,將△ABC折疊,問(wèn)點(diǎn)B的對(duì)稱(chēng)點(diǎn)B1是否落在拋物線(xiàn)上?再以AC的中點(diǎn)為對(duì)稱(chēng)中心,將△ABC作中心對(duì)稱(chēng)變換,這時(shí)點(diǎn)B的對(duì)稱(chēng)點(diǎn)B2是否落在拋物線(xiàn)上?若在,求出它們的坐標(biāo);若不在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖①,將一張直角三角形紙片ABC折疊,使A與C重合,這時(shí)DE為折底,△CBE為等腰三角形,再將紙片沿△CBE的對(duì)稱(chēng)軸EF折疊,這時(shí)得到一個(gè)折疊而成的無(wú)縫隙、無(wú)重疊的矩形,這個(gè)矩形稱(chēng)為“折得矩形”.精英家教網(wǎng)
(1)如圖②,正方形網(wǎng)格中的△ABC能折成“折得矩形”嗎?,若能,請(qǐng)?jiān)趫D②中畫(huà)出折痕;
(2)如圖③,正方形網(wǎng)格中,以給定的BC為一邊,畫(huà)出一個(gè)斜△ABC,使其頂點(diǎn)A在格點(diǎn)上,且由△ABC折成的“折得矩形”為正方形;
(3)如果一個(gè)三角形折成的“折得矩形”為正方形,那么它必須滿(mǎn)足的條件是
 

(4)若一個(gè)四邊形能折成“折得矩形”,那么它必須滿(mǎn)足的條件是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案