點A(- 5,y1)和B(-2,y2)都在直線y = -3 x上,則 y1 與 y2的關(guān)系是
[     ]
A.y1≤y2
B.y1=y2
C.y1>y2
D.y1<y2
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖①,在矩形ABCD中,AB=10cm,BC=8cm,點P從A出發(fā),沿A→B→C→D路線運動,到D停止;點Q從D出發(fā),沿D→C→B→A路線運動,到A停止.若點P、點Q同時出發(fā),點P的速度為每秒1cm,點Q的速度為每秒2cm,a秒時點P、點Q同時改變速度,點P的速度變?yōu)槊棵隻cm,點Q的速度變?yōu)槊棵雂cm.圖②是點P出發(fā)x秒后△APD的面積S1(cm2)與x(秒)的函數(shù)關(guān)系圖象;圖③是點Q出發(fā)x秒后△AQD的面積S2(cm2)與x(秒)的函數(shù)關(guān)系圖象.
(1)參照圖②,求a、b及圖②中的c值;
(2)求d的值;
(3)設點P離開點A的路程為y1(cm),點Q到點A還需走的路程為y2(cm),請分別寫出動點P、Q改變速度后y1、y2與出發(fā)后的運動時間x(秒)的函數(shù)關(guān)系式,并求出P、Q相遇時x的值.
(4)當點Q出發(fā)
 
秒時,點P、點Q在運動路線上相距的路程為25cm.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•寧波模擬)在平面直角坐標系xOy中,已知二次函數(shù)y1=ax2+3x+c的圖象經(jīng)過原點及點A(1,2),與x軸相交于另一點B.
(1)求:二次函數(shù)y1的解析式及B點坐標;
(2)若將拋物線y1以x=3為對稱軸向右翻折后,得到一個新的二次函數(shù)y2,已知二次函數(shù)y2與x軸交于兩點,其中右邊的交點為C點.點P在線段OC上,從O點出發(fā)向C點運動,過P點作x軸的垂線,交直線AO于D點,以PD為邊在PD的右側(cè)作正方形PDEF(當P點運動時,點D、點E、點F也隨之運動);
①當點E在二次函數(shù)y1的圖象上時,求OP的長.
②若點P從O點出發(fā)向C點做勻速運動,速度為每秒1個單位長度,同時線段OC上另一個點Q從C點出發(fā)向O點做勻速運動,速度為每秒2個單位長度(當Q點到達O點時停止運動,P點也同時停止運動).過Q點作x軸的垂線,與直線AC交于G點,以QG為邊在QG的左側(cè)作正方形QGMN(當Q點運動時,點G、點M、點N也隨之運動),若P點運動t秒時,兩個正方形分別有一條邊恰好落在同一條直線上(正方形在x軸上的邊除外),求此刻t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•岱山縣模擬)如圖,已知拋物線y1=ax2+bx+c與拋物線y2=x2+6x+5關(guān)于y軸對稱,并與y軸交于點M,與x軸交于A、B兩點.
 
(1)求拋物線y1的解析式;
(2)若AB的中點為C,求sin∠CMB;
(3)若一次函數(shù)y=kx+h的圖象過點M,且與拋物線y1交于另一點N(m,n),其中m≠n,同時滿足m2-m+t=0和n2-n+t=0(t為常數(shù)).
①求k值;
②設該直線交x軸于點D,P為坐標平面內(nèi)一點,若以O、D、P、M為頂點的四邊形是平行四邊形,試求P點的坐標.(只需直接寫出點P的坐標,不要求解答過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,對于任意兩點P1(x1,y1)與P2(x2,y2)的“非常距離”,給出如下定義:
若|x1-x2|≥|y1-y2|,則點P1與點P2的“非常距離”為|x1-x2|;
若|x1-x2|<|y1-y2|,則點P1與點P2的“非常距離”為|y1-y2|.
例如:點P1(1,2),點P1(3,5),因為|1-3|<|2-5|,所以點P1與點P2的“非常距離”為|2-5|=3,也就是圖1中線段P1Q與線段P2Q長度的較大值(點Q為垂直于y軸的直線P1Q與垂直于x軸的直線P2Q的交點).
(1)已知點A(-
1
2
,0
),B為y軸上的一個動點,①若點A與點B的“非常距離”為2,寫出滿足條件的點B的坐標;②直接寫出點A與點B的“非常距離”的最小值;
(2)如圖2,已知C是直線y=
3
4
x+3
上的一個動點,點D的坐標是(0,1),求點C與點D的“非常距離”最小時,相應的點C的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知反比例函數(shù)y1=
m-1x
,一次函數(shù)y2=kx+b,函數(shù)y1和y2相交于A、B兩點,且A點的坐標是(1,2)、B(a,-1).求:
(1)a的值以及y1和y2的解析式;
(2)畫出函數(shù)圖象,并注明A、B點;
(3)當y1>y2時,x的取值范圍.

查看答案和解析>>

同步練習冊答案