【題目】圖中,AB為⊙O的直徑,AB=4,P為AB上一點(diǎn),過(guò)點(diǎn)P作⊙O的弦CD,設(shè)∠BCD=m∠ACD.

(1)已知 ,求m的值,及∠BCD、∠ACD的度數(shù)各是多少?
(2)在(1)的條件下,且 ,求弦CD的長(zhǎng);
(3)當(dāng) 時(shí),是否存在正實(shí)數(shù)m,使弦CD最短?如果存在,求出m的值,如果不存在,說(shuō)明理由.

【答案】
(1)解:如圖1,

,

得 m=2,
經(jīng)檢驗(yàn)m=2是原方程的根。

連結(jié)AD、BD

∵AB是⊙O的直徑

∴∠ACB=90°,∠ADB=90°

又∵∠BCD=2∠ACD,∠ACB=∠BCD+∠ACD

∴∠ACD=30°,∠BCD=60°;


(2)解:如圖1,連結(jié)AD、BD,則∠ABD=∠ACD=30°,AB=4

∴AD=2, ,

, ,

∵∠APC=∠DPB,∠ACD=∠ABD

∴△APC∽△DPB

,

∴ACDP=APDB= ×2 = ①,

PCDP=APBP= × =

同理△CPB∽△APD

∴BCDP=BPAD= ×2= ③,

由①得 ,由③得 ,

,

在△ABC中,AB=4,

,

由②

方法二:由①÷③得 ,

在△ABC中,AB=4,AC= × =

BC= ×2=

由③ ,

由② ,

;


(3)解:如圖2,連結(jié)OD,

,AB=4,

,

,

,

要使CD最短,則CD⊥AB于點(diǎn)P

于是 ,

∵∠POD=30°

∴∠ACD=15°,∠BCD=75°

∴m=5,故存在這樣的m值,且m=5.


【解析】(1)先求出此分式方程的解,即可求出∠BCD=2∠ACD,連結(jié)AD、BD、OD,根據(jù)兩圓周角所夾弧對(duì)的兩圓心角之和為180°,即可求出∠BCD、∠ACD的度數(shù),或根據(jù)直徑所對(duì)的圓周角是直角,得到∠ACB=∠BCD+∠ACD=90°,即可求得結(jié)果。
(2)由(1)可知∠ABD=30°,根據(jù)已知易求得AD、AP、BP、BD的長(zhǎng)度,再證明△APC∽△DPB、△CPB∽△APD得出它們的對(duì)應(yīng)邊成比例,再在Rt△ABC中,根據(jù)勾股定理,求出DP的長(zhǎng),將DP的長(zhǎng)代入② ,就可以求出PC的長(zhǎng),繼而求出CD。方法二、由①÷③得 A C : B C的值,根據(jù)AB=4求出BC的長(zhǎng),再由③和 ②,即可求出結(jié)果。
(3)要使弦CD最短,根據(jù)軸對(duì)稱的相關(guān)知識(shí),先找到點(diǎn)P的位置,即CD⊥AB于點(diǎn)P,連接OD,根據(jù)已知條件求出AP、OP的長(zhǎng),在Rt△POD中,運(yùn)用銳角三角函數(shù)求出∠POD的度數(shù),從而求出∠ACD,∠BCD的度數(shù),即可求出m的值。
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解勾股定理的概念的相關(guān)知識(shí),掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2,以及對(duì)圓周角定理的理解,了解頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角;一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列4個(gè)結(jié)論:
①abc>0;②b<a+c;③4ac﹣b2>0;④2a+b=0
其中正確的結(jié)論有( )

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為給人們的生活帶來(lái)方便,2017年興化市準(zhǔn)備在部分城區(qū)實(shí)施公共自行車免費(fèi)服務(wù).圖1是公共自行車的實(shí)物圖,圖2是公共自行車的車架示意圖,點(diǎn)A,D,C,E在同一條直線上,CD=35cm,DF=24cm,AF=30cm,F(xiàn)D⊥AE于點(diǎn)D,座桿CE=15cm,且∠EAB=75°.

(1)求AD的長(zhǎng);
(2)求點(diǎn)E到AB的距離(結(jié)果保留整數(shù)).
(參考數(shù)據(jù):sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形的對(duì)角線,相交于點(diǎn),關(guān)于的對(duì)稱圖形為

1)求證:四邊形是菱形;

2)連接,交于點(diǎn),連接,取的中點(diǎn),連接

①根據(jù)題意補(bǔ)全圖形;

②若,請(qǐng)用等式表示線段、之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠設(shè)門市部專賣某產(chǎn)品,該每件成本每件成本30元,從開(kāi)業(yè)一段時(shí)間的每天銷售統(tǒng)計(jì)中,隨機(jī)抽取一部分情況如下表所示:

銷售單位(元)

50

60

70

75

80

85

日銷售量

300

240

180

150

120

90

假設(shè)每天定的銷價(jià)是不變的,且每天銷售情況均服從這種規(guī)律.
(1)秋日銷售量與銷售價(jià)格之間滿足的函數(shù)關(guān)系式;
(2)門市部原設(shè)定兩名銷售員,擔(dān)當(dāng)銷售量較大時(shí),在每天售出量超過(guò)198件時(shí),則必須增派一名營(yíng)業(yè)員才能保證營(yíng)業(yè)有序進(jìn)行.設(shè)營(yíng)業(yè)員每人每天工資為40元,求每件產(chǎn)品應(yīng)定價(jià)多少元,才能使每天門市部純利潤(rùn)最大?(純利潤(rùn)=總銷售﹣成本﹣營(yíng)業(yè)員工資)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】a、b滿足,A(a,0)、B(0b)

(1) 如圖,在x正半軸上有一點(diǎn)Cx,0).若ABC的面積大于6,請(qǐng)直接寫出x的取值范圍____________;

(2)若在平面直角坐標(biāo)系第四象限上存在一點(diǎn)NN的坐標(biāo)為(n,﹣n),滿足4SABN8,求n的取值范圍

(3)若在平面直角坐標(biāo)系上存在一點(diǎn)M,M的坐標(biāo)為(m,﹣2m),請(qǐng)通過(guò)計(jì)算說(shuō)明:無(wú)論m取何值△ABM的面積為定值,并求出這個(gè)值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC的面積為.第一次操作:分別延長(zhǎng),至點(diǎn),,使,,順次連接,,得到△.第二次操作:分別延長(zhǎng),至點(diǎn),,,使,,順次連接,,,得到△,…按此規(guī)律,要使得到的三角形的面積超過(guò)2020,最少經(jīng)過(guò)多少次操作( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】乘法公式的探究及應(yīng)用.

1)如圖1,可以求出陰影部分的面積是   (寫成兩數(shù)平方差的形式);

2)如圖2,若將陰影部分裁剪下來(lái),重新拼成一個(gè)矩形,它的寬是   ,長(zhǎng)是   ,面積是   (寫成多項(xiàng)式乘法的形式);

3)比較圖1、圖2陰影部分的面積,可以得到公式   

4)運(yùn)用你所得到的公式,計(jì)算下列各題:

① 20.2×19.8 ;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,中,,,若動(dòng)點(diǎn)P從點(diǎn)C開(kāi)始,按的路徑運(yùn)動(dòng),且速度為每秒1cm,設(shè)出發(fā)的時(shí)間為t秒.

出發(fā)2秒后,求的面積;

當(dāng)t為幾秒時(shí),BP平分;

問(wèn)t為何值時(shí),為等腰三角形?

查看答案和解析>>

同步練習(xí)冊(cè)答案