(2009•雞西)△ABC在如圖所示的平面直角坐標(biāo)系中.
(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1
(2)畫出將△ABC繞點O順時針旋轉(zhuǎn)90°得到的△A2B2C2
(3)求∠CC2C1的度數(shù).

【答案】分析:根據(jù)定義,通過作圖解決問題,作出△CC2C1,根據(jù)三角形的邊長即可確定三角形的形狀,即可作出判斷.
解答:解:(1)、(2)如圖,正確畫出答案(4分).

(3)由圖可知,∵△CC2C1為等腰直角三角形,
∴∠CC2C1=45°(2分).

點評:根據(jù)軸對稱,中心對稱的定義,畫出符合條件的圖形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《圖形的相似》(05)(解析版) 題型:解答題

(2009•雞西)如圖,?ABCD在平面直角坐標(biāo)系中,AD=6,若OA、OB的長是關(guān)于x的一元二次方程x2-7x+12=0的兩個根,且OA>OB.
(1)求sin∠ABC的值;
(2)若E為x軸上的點,且S△AOE=,求經(jīng)過D、E兩點的直線的解析式,并判斷△AOE與△DAO是否相似?
(3)若點M在平面直角坐標(biāo)系內(nèi),則在直線AB上是否存在點F,使以A、C、F、M為頂點的四邊形為菱形?若存在,請直接寫出F點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《四邊形》(11)(解析版) 題型:解答題

(2009•雞西)如圖,?ABCD在平面直角坐標(biāo)系中,AD=6,若OA、OB的長是關(guān)于x的一元二次方程x2-7x+12=0的兩個根,且OA>OB.
(1)求sin∠ABC的值;
(2)若E為x軸上的點,且S△AOE=,求經(jīng)過D、E兩點的直線的解析式,并判斷△AOE與△DAO是否相似?
(3)若點M在平面直角坐標(biāo)系內(nèi),則在直線AB上是否存在點F,使以A、C、F、M為頂點的四邊形為菱形?若存在,請直接寫出F點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(06)(解析版) 題型:解答題

(2009•雞西)如圖,?ABCD在平面直角坐標(biāo)系中,AD=6,若OA、OB的長是關(guān)于x的一元二次方程x2-7x+12=0的兩個根,且OA>OB.
(1)求sin∠ABC的值;
(2)若E為x軸上的點,且S△AOE=,求經(jīng)過D、E兩點的直線的解析式,并判斷△AOE與△DAO是否相似?
(3)若點M在平面直角坐標(biāo)系內(nèi),則在直線AB上是否存在點F,使以A、C、F、M為頂點的四邊形為菱形?若存在,請直接寫出F點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《一元二次方程》(05)(解析版) 題型:解答題

(2009•雞西)如圖,?ABCD在平面直角坐標(biāo)系中,AD=6,若OA、OB的長是關(guān)于x的一元二次方程x2-7x+12=0的兩個根,且OA>OB.
(1)求sin∠ABC的值;
(2)若E為x軸上的點,且S△AOE=,求經(jīng)過D、E兩點的直線的解析式,并判斷△AOE與△DAO是否相似?
(3)若點M在平面直角坐標(biāo)系內(nèi),則在直線AB上是否存在點F,使以A、C、F、M為頂點的四邊形為菱形?若存在,請直接寫出F點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年上海市寶山區(qū)泗塘中學(xué)初三數(shù)學(xué)基礎(chǔ)卷(解析版) 題型:解答題

(2009•雞西)如圖,?ABCD在平面直角坐標(biāo)系中,AD=6,若OA、OB的長是關(guān)于x的一元二次方程x2-7x+12=0的兩個根,且OA>OB.
(1)求sin∠ABC的值;
(2)若E為x軸上的點,且S△AOE=,求經(jīng)過D、E兩點的直線的解析式,并判斷△AOE與△DAO是否相似?
(3)若點M在平面直角坐標(biāo)系內(nèi),則在直線AB上是否存在點F,使以A、C、F、M為頂點的四邊形為菱形?若存在,請直接寫出F點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案