分析:過P作PM⊥AC于M,PN⊥DF于N,由以斜邊BC上距離B點6cm的點P為中心,把這個三角形按逆時針方向旋轉(zhuǎn)90°至△DEF,根據(jù)旋轉(zhuǎn)的性質(zhì)得∠KPH=90°,∠KGH=90°,得∠MPN=90°,易證Rt△PCM≌Rt△PFN,得到PM=PN,則四邊形PMGN為正方形,Rt△PNK≌Rt△PMH,由PM∥AB,PM:AB=CP:CB,得到
,于是
.
解答:過P作PM⊥AC于M,PN⊥DF于N,如圖,
∵以斜邊BC上距離B點6cm的點P為中心,把這個三角形按逆時針方向旋轉(zhuǎn)90°至△DEF,
∴∠KPH=90°,∠KGH=90°,
∴∠MPN=90°,
∴∠KPN=∠MPH,
∵PC=PF,∠C=∠F,
∴Rt△PCM≌Rt△PFN,
∴PM=PN,
∴四邊形PMGN為正方形,Rt△PNK≌Rt△PMH,
∴S
重疊部分=S
正方形PMGN,
∵∠A=90°,AB=6,AC=8,
∴BC=10,
而PB=6,則PC=4,
又∵PM∥AB,
∴PM:AB=CP:CB,
∴
,
∴
(cm
2).
故答案為
.
點評:本題考查了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后兩圖形全等,對應點到旋轉(zhuǎn)中心的距離相等,對應點與旋轉(zhuǎn)中心的連線段所夾的角等于旋轉(zhuǎn)角.也考查了正方形的判定與性質(zhì)、三角形全等的判定與性質(zhì).