已知拋物線C1如圖1所示,現(xiàn)將C1以y軸為對(duì)稱軸進(jìn)行翻折,得到新的拋物線C2
(1)求拋物線C2的解析式;
(2)在圖1中,將△OAC補(bǔ)成矩形,使△OAC的兩個(gè)頂點(diǎn)成為矩形一邊的兩個(gè)頂點(diǎn),第三個(gè)頂點(diǎn)落在矩形這一邊的對(duì)邊上,請(qǐng)直接(不需要寫過(guò)程)寫出矩形的周長(zhǎng);
(3)如圖2,若拋物線C1的頂點(diǎn)為M,點(diǎn)P為線段BM上一動(dòng)點(diǎn)(不與點(diǎn)M、B重合),PN⊥x軸于N,請(qǐng)求出PC+PN的最小值.

解:(1)根據(jù)圖形,點(diǎn)A、B關(guān)于y軸的對(duì)稱點(diǎn)分別為(1,0)(-2,0),點(diǎn)C的坐標(biāo)為(0,-2),
設(shè)拋物線C2的解析式為y=ax2+bx+c,
,
解得
所以,拋物線C2的解析式為y=x2+x-2;

(2)①AO、CO為一邊時(shí),都是以CO、AO為長(zhǎng)與寬的矩形,
∵A(-1,0)C(0,-2),
∴AO=1,CO=2,
∴周長(zhǎng)為:2(1+2)=2×3=6,
②AC為一邊時(shí),根據(jù)勾股定理,AC===,
根據(jù)三角形的面積,設(shè)點(diǎn)O到AC的距離為h,則וh=×1×2,
解得h=,
所以,周長(zhǎng)為2(+)=;

(3)根據(jù)軸對(duì)稱與最短距離問(wèn)題,作點(diǎn)C關(guān)于直線BM的對(duì)稱點(diǎn)C′,過(guò)C′作C′N⊥x軸交BM于點(diǎn)P,此時(shí)PC+PN最小,
根據(jù)對(duì)稱性,拋物線C1的解析式為y=x2-x-2=(x-2-,
所以,頂點(diǎn)M的坐標(biāo)為(,-),
設(shè)直線BM的解析式為y=kx+b,
,
解得,
所以,直線BM的解析式為y=x-3,
∵直線CC′與直線BM垂直,且經(jīng)過(guò)點(diǎn)C(0,-2),
∴直線CC′的解析式為y=-x-2,
聯(lián)立,
解得,
∴交點(diǎn)坐標(biāo),即CC′的中點(diǎn)坐標(biāo)為(,-),
根據(jù)中點(diǎn)坐標(biāo),C′的縱坐標(biāo)為2×(-)-(-2)=-+2=-,
∵|-|=,
∴PC+PN的最小值為
分析:(1)根據(jù)圖象求出點(diǎn)A、B關(guān)于y軸的對(duì)稱點(diǎn),然后利用待定系數(shù)法求二次函數(shù)解析式解答即可;
(2)分①AO、CO為一邊時(shí),矩形的長(zhǎng)與寬分別是CO、AO,然后根據(jù)矩形的周長(zhǎng)公式列式計(jì)算即可得解,②AC為一邊時(shí),先根據(jù)勾股定理求出AC的長(zhǎng)度,再利用三角形的面積求出點(diǎn)O到AC的長(zhǎng)度,即為矩形的寬,然后根據(jù)矩形的周長(zhǎng)公式列式計(jì)算即可得解;
(3)作點(diǎn)C關(guān)于直線BM的對(duì)稱點(diǎn)C′,過(guò)C′作C′N⊥x軸交BM于點(diǎn)P,此時(shí)PC+PN最小,然后對(duì)稱性求出拋物線C1的解析式,再求出點(diǎn)M的坐標(biāo),然后利用待定系數(shù)法求直線解析式求出BM的解析式,再根據(jù)互相相垂直的直線的解析式的k值互為負(fù)倒數(shù)求出直線CC′的解析式,與直線BM的解析式聯(lián)立求出交點(diǎn)坐標(biāo),然后根據(jù)中點(diǎn)坐標(biāo)公式求出點(diǎn)C′的縱坐標(biāo),絕對(duì)值即為PC+PN的最小值.
點(diǎn)評(píng):本題是對(duì)二次函數(shù)的綜合考查,主要利用了待定系數(shù)法求函數(shù)解析式,矩形的性質(zhì),利用軸對(duì)稱求最短距離,以及中點(diǎn)坐標(biāo)公式,(3)中利用互相垂直的直線的解析式的k值互為負(fù)倒數(shù)求出CC′的直線是解題的關(guān)鍵,也是本題的難點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,已知拋物線C1:y=a(x-1)2+4與直線C2:y=x+b相交于點(diǎn)A(3,精英家教網(wǎng)0)和點(diǎn)B.
(1)求a、b的值;
(2)若P(t,y1),Q(2,y2)是拋物線C1上的兩點(diǎn),且y1<y2,求實(shí)數(shù)t的取值范圍;
(3)如圖2,質(zhì)地均勻的正四面體骰子的各個(gè)面上依次標(biāo)有數(shù)字-1、1、3、4.隨機(jī)拋擲這枚骰子兩次,把第一次著地一面的數(shù)字m記做P點(diǎn)的橫坐標(biāo),第二次著地一面的數(shù)字n記做P點(diǎn)的縱坐標(biāo).則點(diǎn)P(m,n) 落在圖1中拋物線C1與直線C2圍成區(qū)域內(nèi)(圖中陰影部分,含邊界)的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2007•東城區(qū)二模)已知拋物線C1如圖1所示,現(xiàn)將C1以y軸為對(duì)稱軸進(jìn)行翻折,得到新的拋物線C2
(1)求拋物線C2的解析式;
(2)在圖1中,將△OAC補(bǔ)成矩形,使△OAC的兩個(gè)頂點(diǎn)成為矩形一邊的兩個(gè)頂點(diǎn),第三個(gè)頂點(diǎn)落在矩形這一邊的對(duì)邊上,請(qǐng)直接(不需要寫過(guò)程)寫出矩形的周長(zhǎng);
(3)如圖2,若拋物線C1的頂點(diǎn)為M,點(diǎn)P為線段BM上一動(dòng)點(diǎn)(不與點(diǎn)M、B重合),PN⊥x軸于N,請(qǐng)求出PC+PN的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線C1的頂點(diǎn)坐標(biāo)是D(1,4),且經(jīng)過(guò)點(diǎn)C(2,3),又與x軸交于點(diǎn)A、E(點(diǎn)A在點(diǎn)E左邊),與y軸交于點(diǎn)B.
(1)拋物線C1的表達(dá)式是
y=-x2+2x+3
y=-x2+2x+3
;
(2)四邊形ABDE的面積等于
9
9
;
(3)問(wèn):△AOB與△DBE相似嗎?并說(shuō)明你的理由;
(4)設(shè)拋物線C1的對(duì)稱軸與x軸交于點(diǎn)F.另一條拋物線C2經(jīng)過(guò)點(diǎn)E(C2與C1不重合),且頂點(diǎn)為M(a,b),對(duì)稱軸與x軸交于點(diǎn)G,并且以M、G、E為頂點(diǎn)的三角形與以點(diǎn)D、E、F為頂點(diǎn)的三角形全等,求a、b的值.(只需寫出結(jié)果,不必寫解答過(guò)程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年北京市東城區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

已知拋物線C1如圖1所示,現(xiàn)將C1以y軸為對(duì)稱軸進(jìn)行翻折,得到新的拋物線C2
(1)求拋物線C2的解析式;
(2)在圖1中,將△OAC補(bǔ)成矩形,使△OAC的兩個(gè)頂點(diǎn)成為矩形一邊的兩個(gè)頂點(diǎn),第三個(gè)頂點(diǎn)落在矩形這一邊的對(duì)邊上,請(qǐng)直接(不需要寫過(guò)程)寫出矩形的周長(zhǎng);
(3)如圖2,若拋物線C1的頂點(diǎn)為M,點(diǎn)P為線段BM上一動(dòng)點(diǎn)(不與點(diǎn)M、B重合),PN⊥x軸于N,請(qǐng)求出PC+PN的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案