在圖1至圖3中,直線MN與線段AB相交于點O,∠1 = ∠2 = 45°.

(1)如圖1,若AO = OB,請寫出AOBD 的數(shù)量關(guān)系和位置關(guān)系;

(2)將圖1中的MN繞點O順時針旋轉(zhuǎn)得到圖2,其中AO = OB

求證:AC = BDAC BD;

(3)將圖2中的OB拉長為AOk倍得到圖3,求的值.

解:(1)AO BDAOBD;

(2)證明:如圖4,過點BBECADOE,∴∠ACO = ∠BEO

  又∵AO OB,∠AOC = ∠BOE,

∴△AOC ≌ △BOE.∴AC BE

又∵∠1 = 45°, ∴∠ACO = ∠BEO = 135°.

∴∠DEB = 45°.

∵∠2 = 45°,∴BE BD,∠EBD = 90°.∴AC BD. 延長ACDB的延長線于F,如圖4.∵BEAC,∴∠AFD = 90°.∴ACBD

(3)如圖5,過點BBECADOE,∴∠BEO = ∠ACO

又∵∠BOE = ∠AOC

∴△BOE ∽ △AOC

又∵OB kAO,

由(2)的方法易得 BE BD.∴

 


練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

在圖1至圖3中,直線MN與線段AB相交于點O,∠1=∠2=45°.
(1)如圖1,若AO=OB,請寫出AO與BD的數(shù)量關(guān)系和位置關(guān)系;
(2)將圖1中的MN繞點O順時針旋轉(zhuǎn)得到圖2,其中AO=OB.求證:AC=BD,AC⊥BD;
(3)將圖2中的OB拉長為AO的k倍得到圖3,求
BDAC
的值.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(本小題滿分10分)
在圖1至圖3中,直線MN與線段AB相交
于點O,∠1 = ∠2 = 45°.

【小題1】(1)如圖1,若AO OB,請寫出AOBD
的數(shù)量關(guān)系和位置關(guān)系;
【小題2】(2)將圖1中的MN繞點O順時針旋轉(zhuǎn)得到
圖2,其中AO = OB
求證:AC BD,AC ⊥ BD
【小題3】(3)將圖2中的OB拉長為AOk倍得到
圖3,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2012屆河南省商丘市九年級上學期期末考試數(shù)學卷 題型:解答題

(本小題滿分10分)
在圖1至圖3中,直線MN與線段AB相交
于點O,∠1 = ∠2 = 45°.

【小題1】(1)如圖1,若AO OB,請寫出AOBD
的數(shù)量關(guān)系和位置關(guān)系;
【小題2】(2)將圖1中的MN繞點O順時針旋轉(zhuǎn)得到
圖2,其中AO = OB
求證:AC BD,AC ⊥ BD;
【小題3】(3)將圖2中的OB拉長為AOk倍得到
圖3,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年河南省商丘市九年級上學期期末考試數(shù)學卷 題型:解答題

(本小題滿分10分)

在圖1至圖3中,直線MN與線段AB相交

于點O,∠1 = ∠2 = 45°.

1.(1)如圖1,若AO OB,請寫出AOBD

的數(shù)量關(guān)系和位置關(guān)系;

2.(2)將圖1中的MN繞點O順時針旋轉(zhuǎn)得到

圖2,其中AO = OB

求證:AC BD,AC ⊥ BD

3.(3)將圖2中的OB拉長為AOk倍得到

圖3,求的值.

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖(1),小明將一張矩形紙片沿對角線剪開,得到兩張三角形紙片(如圖(2)),量得他們的斜邊長為10cm,較小銳角為30°,再將這兩張三角紙片擺成如圖(3)的形狀,但點B、C、F、D在同一條直線上,且點C與點F重合(在圖(3)至圖(6)中統(tǒng)一用F表示)

小明在對這兩張三角形紙片進行如下操作時遇到了三個問題,請你幫助解決。

(1)將圖(3)中△ABF沿BD向右平移到圖(4)的位置,使點B與點F重合,請你求出平移的距離;

(2)將圖(3)中△ABF繞點F順時針方向旋轉(zhuǎn)30°到圖(5)的位置,A1F交DE于點G,請你求出線段FG的長度; 

(3)將圖(3)中的△ABF沿直線AF翻折到圖(6)的位置,AB1交DE丁點H,請證明:AH=DH。

查看答案和解析>>

同步練習冊答案