直線(xiàn)y=x+2與拋物線(xiàn)y=x2+2x的交點(diǎn)坐標(biāo)是________,________.

(1,3)    (-2,0)
分析:本題可聯(lián)立兩函數(shù)的解析式,所得方程組的解,即為兩函數(shù)的交點(diǎn)坐標(biāo).
解答:聯(lián)立兩函數(shù)的解析式有:,解方程組,得,;
則直線(xiàn)y=x+2與拋物線(xiàn)y=x2+2x的交點(diǎn)坐標(biāo)是(1,3),(-2,0).
點(diǎn)評(píng):本題主要考查了函數(shù)圖象交點(diǎn)的求法,函數(shù)圖象交點(diǎn)坐標(biāo)為兩函數(shù)解析式組成的方程組的解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)有一個(gè)拋物線(xiàn)形的橋洞,橋洞離水面的最大高度BM為3米,跨度OA為6米,以O(shè)A所在直線(xiàn)為x軸,O為原點(diǎn)建立直角坐標(biāo)系(如圖所示).
(1)請(qǐng)你直接寫(xiě)出O、A、M三點(diǎn)的坐標(biāo);
(2)一艘小船平放著一些長(zhǎng)3米、寬2米且厚度均勻的矩形木板,要使該小船能通過(guò)此橋洞,問(wèn)這些木板最高可堆放多少米(設(shè)船身底板與水面同一平面)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,宜昌西陵長(zhǎng)江大橋?qū)儆趻佄锞(xiàn)形懸索橋,橋面(視為水平的)與主懸鋼索之間用垂直鋼拉索連接.橋兩端主塔塔頂?shù)暮0胃叨染?87.5米,橋的單孔跨度(即兩主塔之間的距離)900米,這里水面的海拔高度是74米.若過(guò)主塔塔頂?shù)闹鲬忆撍鳎ㄒ暈閽佄锞(xiàn))最低點(diǎn)離橋面(視為直線(xiàn))的高度為0.5米,橋面離水面的高度為19米.請(qǐng)你計(jì)算距離橋兩端主塔100米處垂直鋼拉索的長(zhǎng).(結(jié)果精確到0.1米)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角坐標(biāo)系中,點(diǎn)A,B,C的坐標(biāo)分別為(-1,0),(3,0),(0,3),過(guò)A精英家教網(wǎng),B,C三點(diǎn)的拋物的對(duì)稱(chēng)軸為直線(xiàn)l,D為對(duì)稱(chēng)軸l上一動(dòng)點(diǎn).
(1)求拋物線(xiàn)的解析式;
(2)求當(dāng)AD+CD最小時(shí)點(diǎn)D的坐標(biāo);
(3)以點(diǎn)A為圓心,以AD為半徑作⊙A.
①證明:當(dāng)AD+CD最小時(shí),直線(xiàn)BD與⊙A相切;
②寫(xiě)出直線(xiàn)BD與⊙A相切時(shí),D點(diǎn)的另一個(gè)坐標(biāo):
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,點(diǎn)D,E分別是矩形OABC中AB和BC邊上的中點(diǎn),點(diǎn)B的坐標(biāo)為(6,4)
(1)寫(xiě)出A,C,E,D四點(diǎn)的坐標(biāo);并判斷點(diǎn)O到直線(xiàn)DE的距離是否等于線(xiàn)段的OE長(zhǎng);
(2)動(dòng)點(diǎn)F在線(xiàn)段DE上,F(xiàn)G⊥x軸于G,F(xiàn)H⊥y軸于H,求矩形面積最大時(shí)點(diǎn)F的坐標(biāo)(利用圖1解答);
(3)我們給出如下定義:分別過(guò)拋物向上的兩點(diǎn)(不在x軸上)作x軸的垂線(xiàn),如果以這兩點(diǎn)及垂足為頂點(diǎn)的矩形在這條拋物線(xiàn)與x軸圍成的封閉圖形內(nèi)部,則稱(chēng)這個(gè)矩形是這條拋物線(xiàn)的內(nèi)接矩形,請(qǐng)你理解上述定義,解答下面的問(wèn)題:若矩形OABC是某個(gè)拋物線(xiàn)的周長(zhǎng)最大的內(nèi)接矩形,求這個(gè)拋物線(xiàn)的解析式(利用圖2解答).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣西省貴港市九年級(jí)第一次教學(xué)質(zhì)量監(jiān)測(cè)數(shù)學(xué)卷 題型:解答題

(本題滿(mǎn)分12分)

如圖所示,在平面直角坐標(biāo)系中,頂點(diǎn)為(,)的拋物線(xiàn)交軸于點(diǎn),交軸于,兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)), 已知點(diǎn)坐標(biāo)為().

 

 

 

 

 

 

 

(1)求此拋物線(xiàn)的解析式;

(2)過(guò)點(diǎn)作線(xiàn)段的垂線(xiàn)交拋物線(xiàn)于點(diǎn),

如果以點(diǎn)為圓心的圓與直線(xiàn)相切,請(qǐng)判斷拋物

線(xiàn)的對(duì)稱(chēng)軸與⊙有怎樣的位置關(guān)系,并給出證明;

(3)已知點(diǎn)是拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),且位于,

兩點(diǎn)之間,問(wèn):當(dāng)點(diǎn)運(yùn)動(dòng)到什么位置時(shí),

面積最大?并求出此時(shí)點(diǎn)的坐標(biāo)和的最大面積.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案