如圖,拋物線y=ax2+bx+c(a≠0)與y軸正半軸交于點(diǎn)C,與x軸交于點(diǎn)A(2精英家教網(wǎng),0)、B(8,0),∠OCA=∠OBC.
(1)求拋物線的解析式;
(2)在直角坐標(biāo)平面內(nèi)確定點(diǎn)M,使得以點(diǎn)M、A、B、C為頂點(diǎn)的四邊形是平行四邊形,請(qǐng)直接寫出點(diǎn)M的坐標(biāo);
(3)若存在一點(diǎn)P到點(diǎn)A、B、C三點(diǎn)的距離相等,求點(diǎn)P的坐標(biāo).
分析:精英家教網(wǎng)(1)本題的關(guān)鍵是求出C點(diǎn)的坐標(biāo),根據(jù)∠OCA=∠OBC易證得三角形OAC與三角形OCB相似,可得出OC2=OA•OB,由此可求得OC的長(zhǎng),即可得出C點(diǎn)的坐標(biāo),然后將A、B、C三點(diǎn)坐標(biāo)代入拋物線中即可求出該二次函數(shù)的解析式.
(2)分三種情況,如圖:
(3)根據(jù)題意可知:點(diǎn)P實(shí)際是三角形ABC的內(nèi)心,因此P必在AB的垂直平分線上,據(jù)此可求出P點(diǎn)的橫坐標(biāo),然后設(shè)出其縱坐標(biāo),根據(jù)坐標(biāo)系兩點(diǎn)間的距離公式,表示出PC和PA的長(zhǎng),已知了PC=PA,據(jù)此可求出P點(diǎn)的坐標(biāo).
解答:精英家教網(wǎng)解:(1)∵∠AOC=∠COB,∠OCA=∠OBC
∴△AOC∽△COB
∴OC2=AO•BO=2×8=16
∴OC=4
∴C(0,4)
由題意,設(shè)拋物線解析式y(tǒng)=a(x-2)(x-8)
∴a(0-2)(0-8)=4
∴a=
1
4

∴y=
1
4
x2-
5
2
x+4

(2)M1(6,4)或M2(-6,4)或M3(10,-4)

(3)∵點(diǎn)P到點(diǎn)A、B、C三點(diǎn)的距離相等,
∴點(diǎn)P為線段AB、AC中垂線的交點(diǎn).
由已知易求出線段AB中垂線的直線方程是:x=5.
設(shè)P(5,y),
∵點(diǎn)P在線段AC的中垂線上,
∴PC=PA
∴(5-0)2+(y-4)2=(5-2)2+y2
解得y=4
∴P(5,4).
點(diǎn)評(píng):本題主要考查了二次函數(shù)解析式的確定、平行四邊形的性質(zhì)以及三角形的內(nèi)心坐標(biāo)的求法等知識(shí)點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

8、如圖,直線y=ax+b與拋物線y=ax2+bx+c的圖象在同一坐標(biāo)系中可能是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線y1=-ax2-ax+1經(jīng)過(guò)點(diǎn)P(-
1
2
,
9
8
),且與拋物線y2=ax2-ax-1相交于A,B兩點(diǎn).
(1)求a值;
(2)設(shè)y1=-ax2-ax+1與x軸分別交于M,N兩點(diǎn)(點(diǎn)M在點(diǎn)N的左邊),y2=ax2-ax-1與x軸分別交于E,F(xiàn)兩點(diǎn)(點(diǎn)E在點(diǎn)F的左邊),觀察M,N,E,F(xiàn)四點(diǎn)的坐標(biāo),寫出一條正確的結(jié)論,并通過(guò)計(jì)算說(shuō)明;
(3)設(shè)A,B兩點(diǎn)的橫坐標(biāo)分別記為xA,xB,若在x軸上有一動(dòng)點(diǎn)Q(x,0),且xA≤x≤xB,過(guò)Q作一條垂直于x軸的直線,與兩條拋物線分別交于C,D精英家教網(wǎng)兩點(diǎn),試問(wèn)當(dāng)x為何值時(shí),線段CD有最大值,其最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線y=-ax2+ax+6a交x軸負(fù)半軸于點(diǎn)A,交x軸正半軸于點(diǎn)B,交y軸正半軸于點(diǎn)D,精英家教網(wǎng)O為坐標(biāo)原點(diǎn),拋物線上一點(diǎn)C的橫坐標(biāo)為1.
(1)求A,B兩點(diǎn)的坐標(biāo);
(2)求證:四邊形ABCD的等腰梯形;
(3)如果∠CAB=∠ADO,求α的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,拋物線的頂點(diǎn)為點(diǎn)D,與y軸相交于點(diǎn)A,直線y=ax+3與y軸也交于點(diǎn)A,矩形ABCO的頂點(diǎn)B在精英家教網(wǎng)此拋物線上,矩形面積為12,
(1)求該拋物線的對(duì)稱軸;
(2)⊙P是經(jīng)過(guò)A、B兩點(diǎn)的一個(gè)動(dòng)圓,當(dāng)⊙P與y軸相交,且在y軸上兩交點(diǎn)的距離為4時(shí),求圓心P的坐標(biāo);
(3)若線段DO與AB交于點(diǎn)E,以點(diǎn)D、A、E為頂點(diǎn)的三角形是否有可能與以點(diǎn)D、O、A為頂點(diǎn)的三角形相似,如果有可能,請(qǐng)求出點(diǎn)D坐標(biāo)及拋物線解析式;如果不可能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,拋物線y=ax2+ax+c與y軸交于點(diǎn)C(0,-2),精英家教網(wǎng)與x軸交于點(diǎn)A、B,點(diǎn)A的坐標(biāo)為(-2,0).
(1)求該拋物線的解析式;
(2)M是線段OB上一動(dòng)點(diǎn),N是線段OC上一動(dòng)點(diǎn),且ON=2OM,分別連接MC、MN.當(dāng)△MNC的面積最大時(shí),求點(diǎn)M、N的坐標(biāo);
(3)若平行于x軸的動(dòng)直線與該拋物線交于點(diǎn)P,與線段AC交于點(diǎn)F,點(diǎn)D的坐標(biāo)為(-1,0).問(wèn):是否存在直線l,使得△ODF是等腰三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案