在△ABC中,給出下列各組條件:①∠A:∠B:∠C=3:4:5;②a:b:c=3:4:5;③a=16,b=63,c=65;④a=130,b=128,c=17.其中能判定△ABC是直角三角形的有( 。
分析:由直角三角形的定義,只要驗證最大角是否是90°;由勾股定理的逆定理,只要驗證兩小邊的平方和是否等于最長邊的平方即可.
解答:解:①∵∠A:∠B:∠C=3:4:5,∴∠C=
5
3+4+5
×180°=75°,故不是直角三角形;
B、設(shè)a=3k,則b=4k,c=5k,∵(3k)2+(4k)2=(5k)2,故是直角三角形;
C、∵162+632=652,∴能判定△ABC是直角三角形;
D、∵1282+172≠1302,∴不能判定△ABC是直角三角形.
故選B.
點評:本題主要考查勾股定理的逆定理的應(yīng)用.判斷三角形是否為直角三角形,已知三角形三邊的長,只要利用勾股定理的逆定理加以判斷即可.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2013•黃石)如圖1,點C將線段AB分成兩部分,如果
AC
AB
=
BC
AC
,那么稱點C為線段AB的黃金分割點.某數(shù)學興趣小組在進行課題研究時,由黃金分割點聯(lián)想到“黃金分割線”,類似地給出“黃金分割線”的定義:直線l將一個面積為S的圖形分成兩部分,這兩部分的面積分別為S1、S2,如果
S1
S
=
S2
S1
,那么稱直線l為該圖形的黃金分割線.
(1)如圖2,在△ABC中,∠A=36°,AB=AC,∠C的平分線交AB于點D,請問點D是否是AB邊上的黃金分割點,并證明你的結(jié)論;
(2)若△ABC在(1)的條件下,如圖3,請問直線CD是不是△ABC的黃金分割線,并證明你的結(jié)論;
(3)如圖4,在直角梯形ABCD中,∠D=∠C=90°,對角線AC、BD交于點F,延長AB、DC交于點E,連接EF交梯形上、下底于G、H兩點,請問直線GH是不是直角梯形ABCD的黃金分割線,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在△ABC中,AB>AC,D是BC邊上的點(不與B,C重合),F(xiàn),E分別是AD及其延長線上的點,CF∥BE.
(1)請你添加一個條件(不再添加其它線段,不再標注或使用其他字母),
使△BDE≌△CDF,并給出證明.你添加的條件是:
BD=DC(或D是BC的中點,F(xiàn)D=ED,CF=BE)
BD=DC(或D是BC的中點,F(xiàn)D=ED,CF=BE)
;
(2)在(1)的條件下,連接CE、BF,判斷CE與BF的數(shù)量關(guān)系與位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2013年初中畢業(yè)升學考試(湖北黃石卷)數(shù)學(帶解析) 題型:解答題

如圖1,點C將線段AB分成兩部分,如果,那么稱點C為線段AB的黃金分割點。某數(shù)學興趣小組在進行課題研究時,由黃金分割點聯(lián)想到“黃金分割線”,類似地給出“黃金分割線”的定義:直線l將一個面積為S的圖形分成兩部分,這兩部分的面積分別為S1、S2,如果,那么稱直線l為該圖形的黃金分割線.

(1)如圖2,在△ABC中,∠A=360°,AB=AC,∠C的平分線交AB于點D,請問點D是否是AB邊上的黃金分割點,并證明你的結(jié)論;
(2)若△ABC在(1)的條件下,如圖(3),請問直線CD是不是△ABC的黃金分割線,并證明你的結(jié)論;
(3)如圖4,在直角梯形ABCD中,∠D=∠C=900,對角線AC、BD交于點F,延長AB、DC交于點E,連接EF交梯形上、下底于G、H兩點,請問直線GH是不是直角梯形ABCD的黃金分割線,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源:2013年初中畢業(yè)升學考試(湖北黃石卷)數(shù)學(解析版) 題型:解答題

如圖1,點C將線段AB分成兩部分,如果,那么稱點C為線段AB的黃金分割點。某數(shù)學興趣小組在進行課題研究時,由黃金分割點聯(lián)想到“黃金分割線”,類似地給出“黃金分割線”的定義:直線l將一個面積為S的圖形分成兩部分,這兩部分的面積分別為S1、S2,如果,那么稱直線l為該圖形的黃金分割線.

(1)如圖2,在△ABC中,∠A=360°,AB=AC,∠C的平分線交AB于點D,請問點D是否是AB邊上的黃金分割點,并證明你的結(jié)論;

(2)若△ABC在(1)的條件下,如圖(3),請問直線CD是不是△ABC的黃金分割線,并證明你的結(jié)論;

(3)如圖4,在直角梯形ABCD中,∠D=∠C=900,對角線AC、BD交于點F,延長AB、DC交于點E,連接EF交梯形上、下底于G、H兩點,請問直線GH是不是直角梯形ABCD的黃金分割線,并證明你的結(jié)論.

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖1,點C將線段AB分成兩部分,如果數(shù)學公式,那么稱點C為線段AB的黃金分割點.某數(shù)學興趣小組在進行課題研究時,由黃金分割點聯(lián)想到“黃金分割線”,類似地給出“黃金分割線”的定義:直線l將一個面積為S的圖形分成兩部分,這兩部分的面積分別為S1、S2,如果數(shù)學公式,那么稱直線l為該圖形的黃金分割線.
(1)如圖2,在△ABC中,∠A=36°,AB=AC,∠C的平分線交AB于點D,請問點D是否是AB邊上的黃金分割點,并證明你的結(jié)論;
(2)若△ABC在(1)的條件下,如圖3,請問直線CD是不是△ABC的黃金分割線,并證明你的結(jié)論;
(3)如圖4,在直角梯形ABCD中,∠D=∠C=90°,對角線AC、BD交于點F,延長AB、DC交于點E,連接EF交梯形上、下底于G、H兩點,請問直線GH是不是直角梯形ABCD的黃金分割線,并證明你的結(jié)論.

查看答案和解析>>

同步練習冊答案