如圖,已知拋物線y=x2+bx+c經(jīng)過A(3,0)、B(0,4)兩點(diǎn).
(1)求此拋物線的解析式;
(2)若拋物線與x軸的另一個(gè)交點(diǎn)為C,求點(diǎn)C關(guān)于直線AB的對(duì)稱點(diǎn)C'的坐標(biāo);
(3)若點(diǎn)D是第二象限內(nèi)點(diǎn),以D為圓心的圓分別與x軸、y軸、直線AB相切于點(diǎn)E、F、H,問在拋物線的對(duì)稱軸上是否存在一點(diǎn)一點(diǎn)P,使得|PH-PA|的值最大?若存在,求出該最大值;若不存在,請(qǐng)說明理由.
解:(1)由題意得:, 2分 解得:. 3分 ∴拋物線解析式為y=x2-x+4. 4分 (2)令y=0,得:x2-x+4=0. 解得:x1=1,x2=3. ∴C點(diǎn)坐標(biāo)為(1,0). 5分 作CQ⊥AB,垂足為Q,延長CQ,使CQ=C'Q, 則點(diǎn)C'就是點(diǎn)C關(guān)于直線AB的對(duì)稱點(diǎn). 由△ABC的面積得:CQ·AB=CA·OB, ∵AB==5, CA=2, 6分 作C'T⊥x軸,垂足為T,則△CTC'∽△BOA ∴==, 8分 ∴C'T=,CT=. ∴OT=1+=∴C'點(diǎn)的坐標(biāo)為(,) 9分 (3)設(shè)⊙D的半徑為r,∴AE=r+3,BF=4-r,HB=BF=4-r. ∵AB=5,且AE=AH, ∴r+3=5+4-r,∴r=3. 10分 HB=4-3=1. 作HN⊥y軸,垂足為N,則=,=, ∴HN=,BN=,∴H點(diǎn)坐標(biāo)為(-,). 11分 根據(jù)拋物線的對(duì)稱性,得PA=PC, ∵|PH-PA|=|PH-PC|≤HC, ∴當(dāng)H、C、P三點(diǎn)共線時(shí),|PH-PC|最大. ∵HC==, ∴|PH-PA|的最大值為. 12分 |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知拋物線y=x-ax+a-4a-4與x軸相交于點(diǎn)A和點(diǎn)B,與y軸相交于點(diǎn)D(0,8),直線DC平行于x軸,交拋物線于另一點(diǎn)C,動(dòng)點(diǎn)P以每秒2個(gè)單位長度的速度從C點(diǎn)出發(fā),沿C→D運(yùn)動(dòng),同時(shí),點(diǎn)Q以每秒1個(gè)單位長度的速度從點(diǎn)A出發(fā),沿A→B運(yùn)動(dòng),連接PQ、CB,設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒.
(1)求a的值;
(2)當(dāng)四邊形ODPQ為矩形時(shí),求這個(gè)矩形的面積;
(3)當(dāng)四邊形PQBC的面積等于14時(shí),求t的值.
(4)當(dāng)t為何值時(shí),△PBQ是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011年江蘇省蘇州市中考模擬數(shù)學(xué)卷 題型:解答題
(本題9分)如圖,已知拋物線y=ax2+bx+3的圖象與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,且點(diǎn)C、D是拋物線上的一對(duì)對(duì)稱點(diǎn).
【小題1】(1)求拋物線的解析式;
【小題2】(2)求點(diǎn)D的坐標(biāo),并在圖中畫出直線BD;
【小題3】(3)求出直線BD的一次函數(shù)解析式,并根據(jù)圖象回答:當(dāng)x滿足什么條件時(shí),上述二次函數(shù)的值大于該一次函數(shù)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年蘇州工業(yè)園區(qū)九年級(jí)下學(xué)期學(xué)科調(diào)研數(shù)學(xué)卷 題型:解答題
(9分)如圖,已知拋物線y=x2+bx-3a過點(diǎn)A(1,0),B(0,-3),與x軸交于另一點(diǎn)C.
(1)求拋物線的解析式;
(2)若在第三象限的拋物線上存在點(diǎn)P,使△PBC為以點(diǎn)B為直角頂點(diǎn)的直角三角形,
求點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,在拋物線上是否存在一點(diǎn)Q,使以P,Q,B,C為頂點(diǎn)的四邊形
為直角梯形?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年陜西省興平市九年級(jí)上學(xué)期期末練習(xí)數(shù)學(xué)卷 題型:解答題
(本題滿分10分)
如圖,已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為x=1,且拋物線經(jīng)過A(—1,0)、C(0,—3)兩點(diǎn),與x軸交于另一點(diǎn)B.
1.(1)求這條拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;
2.(2)在拋物線的對(duì)稱軸x=1上求一點(diǎn)M,使點(diǎn)M到點(diǎn)A的距離與到點(diǎn)C的距離之和最小,并求出此時(shí)點(diǎn)M的坐標(biāo);
3.(3)設(shè)點(diǎn)P為拋物線的對(duì)稱軸x=1上的一動(dòng)點(diǎn),求使∠PCB=90°的點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com