【題目】為了慶!拔逅摹鼻嗄旯(jié),某校舉行了書法比賽,賽后隨機抽查部分參賽同學的成績,并制作成圖表如下:

分數(shù)段

頻數(shù)

頻率

30

0.15

0.45

60

20

0.1

請根據(jù)以上圖表提供的信息,解答下列問題:

1)這次隨機抽査了_______名學生;

2)請在圖中補全頻數(shù)分布直方圖;

3)若繪制扇形統(tǒng)計圖,分數(shù)段所對應扇形的圓心角的度數(shù)是________;

4)全校共有600名學生參加比賽,估計該校成績范圍內(nèi)的學生有多少人?

【答案】(1)200;(2)詳見解析;(3);(4)240.

【解析】

1)根據(jù)60≤x70的頻數(shù)及其頻率求得總?cè)藬?shù);
2)根據(jù)(1)的結(jié)果,求得的值,可以補全直方圖;
3)用360°乘以樣本中分數(shù)段60≤x70的頻率即可得;
4)總?cè)藬?shù)乘以樣本中成績80≤x100范圍內(nèi)的學生人數(shù)所占比例.

解:(1)本次調(diào)查的總?cè)藬?shù)為30÷0.15200人,

,

2)補全頻數(shù)分布直方圖如下:

3)若繪制扇形統(tǒng)計圖,分數(shù)段60≤x70所對應扇形的圓心角的度數(shù)是360°×0.1554°,
故答案為:54°;

(4),

答:估計該校成績80≤x100范圍內(nèi)的學生有240人.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將△ABC繞點B按逆時針方向旋轉(zhuǎn)得到△EBD,點E、點D分別與點A、點C對應,且點D在邊AC上,邊DE交邊AB于點F,△BDC∽△ABC.已知,AC5,那么△DBF的面積等于_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ACB為直角,AB=10,°,半徑為1的動圓Q的圓心從點C出發(fā),沿著CB方向以1個單位長度/秒的速度勻速運動,同時動點P從點B出發(fā),沿著BA方向也以1個單位長度/秒的速度勻速運動,設運動時間為t秒(0<t≤5)以P為圓心,PB長為半徑的⊙PABBC的另一個交點分別為E、D,連結(jié)ED、EQ

(1)判斷并證明EDBC的位置關系,并求當點Q與點D重合時t的值;

(2)當⊙PAC相交時,設CQ,PAC 截得的弦長為,求關于的函數(shù); 并求當⊙Q過點B時⊙PAC截得的弦長;

(3)若⊙P與⊙Q相交,寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是矩形,點EAD邊上,點FAD的延長線上,且BE=CF.

(1)求證:四邊形EBCF是平行四邊形.

(2)若BEC=90°,ABE=30°,AB=,求ED的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,拋物線軸交于點(點在點的左側(cè)),對稱軸與軸交于點(3,0),且

1)求拋物線的表達式及頂點坐標;

2)將拋物線平移,得到的新拋物線的頂點為(0,﹣1),拋物線的對稱軸與兩條拋物線,圍成的封閉圖形為.直線經(jīng)過點.若直線與圖形有公共點,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,D是邊AC上一點,聯(lián)結(jié)BD,給出下列條件:∠ABD=∠ACB;②AB2=ADAC;③ADBC=ABBD;④ABBC=ACBD.其中單獨能夠判定△ABD∽△ACB的個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在ABC中,AB = 4,BC = 5,點P在邊AC上,且,聯(lián)結(jié)BP,以BP為一邊作BPQ(點B、PQ按逆時針排列),點GBPQ的重心,聯(lián)結(jié)BG,∠PBG =BCA,∠QBG =BAC,聯(lián)結(jié)CQ并延長,交邊AB于點M.設PC = x,

1)求的值;

2)求y關于x的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,三張黑桃撲克牌,背面完全相同將三張撲克牌背面朝上,洗勻后放在桌面上甲,乙兩人進行摸牌游戲,甲先從中隨機抽取一張,記下數(shù)字再放回洗勻,乙再從中隨機抽取一張.

1)甲抽到黑桃,這一事件是   事件(填不可能隨機,必然);

2)利用樹狀圖或列表的方法,求甲乙兩人抽到同一張撲克牌的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在矩形ABCD中,點E在邊AD上,點F在邊BC上,且AE=CF,作EGFH,分別與對角線BD交于點GH,連接EHFG

1)求證:△BFH≌△DEG;

2)連接DF,若BF=DF,則四邊形EGFH是什么特殊四邊形?證明你的結(jié)論.

查看答案和解析>>

同步練習冊答案