如圖,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的長。小萍同學(xué)靈活運(yùn)用軸對稱知識,將圖形進(jìn)行翻折變換,巧妙地解答了此題.請按照小萍的思路,探究并解答下列問題:

(1)AB、AC為對稱軸,畫出△ABD、△ACD的軸對稱圖形,D點(diǎn)的對稱點(diǎn)為E、F,延長EB、FC相交于G點(diǎn),證明四邊形AEGF是正方形;

(2)設(shè)AD=x,利用勾股定理,建立關(guān)于x的方程模型,求出x的值.

 

【答案】

(1)四邊形AEGF是正方形; (2)x=12.

【解析】

試題分析:(1)先根據(jù)△ABD≌△ABE,△ACD≌△ACF,得出∠EAF=90°;再根據(jù)對稱的性質(zhì)得到AE=AF,從而說明四邊形AEGF是正方形;

(2)利用勾股定理,建立關(guān)于x的方程模型(x﹣4)2+(x﹣6)2=102,求出AD=x=12.

試題解析:(1)證明:由題意可得:△ABD≌△ABE,△ACD≌△ACF.

∴∠DAB=∠EAB,∠DAC=∠FAC,又∠BAC=45°,

∴∠EAF=90°.

又∵AD⊥BC

∴∠E=∠ADB=90°,∠F=∠ADC=90°.

∴四邊形AEGF是矩形,

又∵AE=AD,AF=AD

∴AE=AF.

∴矩形AEGF是正方形.

(2)解:設(shè)AD=x,則AE=EG=GF=x.

∵BD=4,DC=6

∴BE=4,CF=6

∴BG=x﹣4,CG=x﹣6

在Rt△BGC中,BG2+CG2=BC2,

∴(x﹣4)2+(x﹣6)2=102

化簡得,x2﹣10x﹣24=0

解得x1=12,x2=﹣2(舍去)

所以AD=x=12.

考點(diǎn):折疊問題;全等三角形的判定與性質(zhì);勾股定理.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖在△ABC中,已知點(diǎn)D、E、F分別為邊BC,AD,CE的中點(diǎn),且△ABC的面積是4,則△BEF的面積是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

15、如圖,△ABC中,已知AB=AC,要使AD=AE,需要添加的一個條件是
BD=CE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC中,已知AB=AC,△DEF是△ABC的內(nèi)接正三角形,α=∠BDF,β=∠CED,γ=∠AFE,則用β、γ表示α的關(guān)系式是
α=
β+γ
2
α=
β+γ
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC中,已知AB=AC,BD=DC,則∠ADB=
90°
90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

對同一圖形,從不同的角度看就會有不同的發(fā)現(xiàn),請根據(jù)右圖解決以下問題:
(1)如圖,△ABC中,已知∠BAC=45°,AD⊥BC于D,分別以AB、AC所在的直線為對稱軸,作出△ABD、△ACD的軸對稱圖形,點(diǎn)D的對稱點(diǎn)分別為E、F,延長EB、FC相交于G點(diǎn),試證明四邊形AEGF是正方形;
(2)如圖,在邊長為12cm的正方形AEFG中,點(diǎn)B是邊EG上一點(diǎn),將邊AE、AF分別沿AB、AC向內(nèi)翻折至AD處,則點(diǎn)B、D、C在一條直線上,若EB=4cm,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案