精英家教網 > 初中數學 > 題目詳情

在△ABC中,∠C=90°,AD平分∠BAC,BC=48,BD:DC=5:3,點D到AB的距離等于________.

18
分析:首先過點D作DE⊥AB于E,由在△ABC中,∠C=90°,AD平分∠BAC,根據角平分線的性質,即可求得DE=DC,又由BC=48,BD:DC=5:3,即可求得答案.
解答:解:過點D作DE⊥AB于E,
∵在△ABC中,∠C=90°,AD平分∠BAC,
即AC⊥CD,
∴DE=DC,
∵BC=48,BD:DC=5:3,
∴DC=×48=18,
∴DE=18,
即點D到AB的距離等于18.
故答案為:18.
點評:此題考查了角平分線的性質.此題比較簡單,注意掌握輔助線的作法,注意數形結合思想的應用.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

23、如圖,在△ABC中,CD⊥AB,垂足為D,點E在BC上,EF⊥AB,垂足為F.
(1)CD與EF平行嗎?為什么?
(2)如果∠1=∠2,且∠3=115°,求∠ACB的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

在△ABC中,∠C=90°,∠A=30°,以AB、AC為邊向△ABC外作等邊△ABD和等邊△ACE.
精英家教網
(1)如圖1.連接BE、CD,BE與CD交于點O,
①證明:DC=BE;
②∠BOC=
 
°. (直接填答案)
(2)如圖2,連接DE,交AB于點F.DF與EF相等嗎?證明你的結論.

查看答案和解析>>

科目:初中數學 來源: 題型:

18、如圖,在△ABC中,邊AC的垂直平分線交BC于點D,交AC于點E、已知△ABC中與△ABD的周長分別為18cm和12cm,則線段AE的長等于
3
cm.

查看答案和解析>>

科目:初中數學 來源: 題型:

在△ABC中,∠C=90°,BC=12,AB=13,則tanA的值是( 。
A、
5
12
B、
12
5
C、
12
13
D、
5
13

查看答案和解析>>

科目:初中數學 來源: 題型:

在△ABC中,a=
2
,b=
6
,c=2
2
,則最大邊上的中線長為( 。
A、
2
B、
3
C、2
D、以上都不對

查看答案和解析>>

同步練習冊答案