3、關(guān)于拋物線y=(x-2)2-2和y=-(x-2)2的說法中,正確的是( 。
分析:兩個(gè)拋物線解析式都是頂點(diǎn)式,可以根據(jù)頂點(diǎn)式直接判斷頂點(diǎn)坐標(biāo),對(duì)稱軸,開口方向及與y軸的交點(diǎn).
解答:解:∵拋物線y=(x-2)2-2的頂點(diǎn)坐標(biāo)為(2,-2),
拋物線y=-(x-2)2的頂點(diǎn)坐標(biāo)為(2,0),
∴它們的對(duì)稱軸相同,
但是頂點(diǎn)坐標(biāo),開口方向,與x軸交點(diǎn)坐標(biāo)都不同.
故選A.
點(diǎn)評(píng):主要考查利用函數(shù)解析式確定頂點(diǎn)坐標(biāo),對(duì)稱軸以及開口方向和與x軸的交點(diǎn)坐標(biāo).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

8、關(guān)于拋物線y=(x-1)2+3的描述錯(cuò)誤的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

7、如圖,關(guān)于拋物線y=(x-1)2-2,下列說法錯(cuò)誤的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線過點(diǎn)A(-1,0)、B(4,0)、C(
11
5
,-
12
5
)

(1)求拋物線對(duì)應(yīng)的函數(shù)關(guān)系式及對(duì)稱軸;
(2)點(diǎn)C′是點(diǎn)C關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn),證明直線y=-
4
3
(x+1)
必經(jīng)過點(diǎn)C′.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知正方形ABCD的邊長(zhǎng)為2,將此正方形置于直角坐標(biāo)系xOy中,使AB在x軸上,對(duì)角線的交點(diǎn)E在直線y=x-1上.
(1)按題設(shè)條件畫出直角坐標(biāo)系xOy,并求出點(diǎn)A、B、C、D的坐標(biāo);
(2)若直線y=x-1與y軸相交于G點(diǎn),拋物線y=ax2+bx+c過G、A、B三點(diǎn),求拋物線的解析式及點(diǎn)G關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)M的坐標(biāo);
(3)在(2)中的拋物線上且位于X軸上方處是否存在點(diǎn)P,使三角形PAM的面積最大?若存在,求出符合條件的點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•溫州)如圖,經(jīng)過原點(diǎn)的拋物線y=-x2+2mx(m>0)與x軸的另一個(gè)交點(diǎn)為A.過點(diǎn)P(1,m)作直線PM⊥x軸于點(diǎn)M,交拋物線于點(diǎn)B.記點(diǎn)B關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)為C(B、C不重合).連接CB,CP.
(1)當(dāng)m=3時(shí),求點(diǎn)A的坐標(biāo)及BC的長(zhǎng);
(2)當(dāng)m>1時(shí),連接CA,問m為何值時(shí)CA⊥CP?
(3)過點(diǎn)P作PE⊥PC且PE=PC,問是否存在m,使得點(diǎn)E落在坐標(biāo)軸上?若存在,求出所有滿足要求的m的值,并定出相對(duì)應(yīng)的點(diǎn)E坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案