在Rt△ACB中,∠ACB=90°,BD是∠ABC的角平分線,交AC于點(diǎn)D,CE⊥AB于點(diǎn)E,交BD于點(diǎn)O,過O點(diǎn)作FG∥AB,交BC于點(diǎn)F,交AC于點(diǎn)G.
求證:CD=GA.

證明:∵BD平分∠ABC,
∴∠1=∠2,
∵∠BCD=90°,
∴∠1+∠3=90°,
∵CE⊥AB,
∴∠BEO=90°,
∴∠2+∠4=90°
∴∠3=∠4,
∵∠4=∠5,
∴∠3=∠5,
∴OC=DC,
過點(diǎn)D作DH⊥AB于H,
∵BD平分∠ABC,DH⊥AB于H,DC⊥BC于C,
∴DC=DH,
∵DC=OC,
∴OC=DH,
∵FG∥AB,
∴∠6=∠A,
∵DH⊥AB,CE⊥AB,
∴DH∥CE,
∴∠ADH=∠GCE,
∵在△COG和△DHA中

∴△COG≌△DHA,
∴CG=DA,
∴CG-CD=DA-DG,
即CD=AG.
分析:過點(diǎn)D作DH⊥AB于H,先求出∠3=∠5,推出DC=OC,再證△COG≌△DHA,推出CG=AD,都減去DG即可得出答案.
點(diǎn)評(píng):本題考查了角平分線性質(zhì),定義三角形性質(zhì),平行線的性質(zhì)和判定,全等三角形的性質(zhì)和判定等知識(shí)點(diǎn)的綜合運(yùn)用,主要考查學(xué)生的推理能力,綜合性比較強(qiáng),有一定的難度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC為直徑作⊙O交AB于點(diǎn)D.
(1)求線段AD的長(zhǎng)度;
(2)點(diǎn)E是線段AC上的一點(diǎn),試問當(dāng)點(diǎn)E在什么位置時(shí),直線ED與⊙O相切?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•湖州)如圖,已知在Rt△ACB中,∠C=90°,AB=13,AC=12,則cosB的值為
5
13
5
13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•青銅峽市模擬)已知:如圖①,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,點(diǎn)P由B出發(fā)沿BA方向向點(diǎn)A勻速運(yùn)動(dòng),速度為1cm/s;點(diǎn)Q由A出發(fā)沿AC方向向點(diǎn)C勻速運(yùn)動(dòng),速度為2cm/s;連接PQ.若設(shè)運(yùn)動(dòng)的時(shí)間為t(s)(0<t<2),解答下列問題:
(1)當(dāng)t為何值時(shí),PQ∥BC?
(2)設(shè)△AQP的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;
(3)如圖②,連接PC,并把△PQC沿QC翻折,得到四邊形PQP′C,那么是否存在某一時(shí)刻t,使四邊形PQP′C為菱形?若存在,求出此時(shí)t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•丹東一模)在Rt△ACB中,∠C=90°,AC=BC,一直角三角板的直角頂角O在AB邊的中點(diǎn)上,這塊三角板繞O點(diǎn)旋轉(zhuǎn),兩條直角邊始終與AC、BC邊分別相交于E、F,連接EF,則在運(yùn)動(dòng)過程中,△OEF與△ABC的關(guān)系是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在Rt△ACB中,∠C=90°,AD平分∠BAC,若BC=16,BD=10,則點(diǎn)D到AB的距離是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案