(2010•河北)如圖,已知拋物線y=x2+bx+c的對稱軸為x=2,點A,B均在拋物線上,且AB與x軸平行,其中點A的坐標(biāo)為(0,3),則點B的坐標(biāo)為( )

A.(2,3)
B.(3,2)
C.(3,3)
D.(4,3)
【答案】分析:已知拋物線的對稱軸為x=2,知道A的坐標(biāo)為(0,3),由函數(shù)的對稱性知B點坐標(biāo).
解答:解:由題意可知拋物線的y=x2+bx+c的對稱軸為x=2,
∵點A的坐標(biāo)為(0,3),且AB與x軸平行,
可知A、B兩點為對稱點,
∴B點坐標(biāo)為(4,3)
故選D.
點評:本題主要考查二次函數(shù)的對稱性.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(06)(解析版) 題型:解答題

(2010•河北)如圖,在直角坐標(biāo)系中,矩形OABC的頂點O與坐標(biāo)原點重合,頂點A,C分別在坐標(biāo)軸上,頂點B的坐標(biāo)為(4,2).過點D(0,3)和E(6,0)的直線分別與AB,BC交于點M,N.
(1)求直線DE的解析式和點M的坐標(biāo);
(2)若反比例函數(shù)(x>0)的圖象經(jīng)過點M,求該反比例函數(shù)的解析式,并通過計算判斷點N是否在該函數(shù)的圖象上;
(3)若反比例函數(shù)(x>0)的圖象與△MNB有公共點,請直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(07)(解析版) 題型:解答題

(2010•河北)如圖,在直角坐標(biāo)系中,矩形OABC的頂點O與坐標(biāo)原點重合,頂點A,C分別在坐標(biāo)軸上,頂點B的坐標(biāo)為(4,2).過點D(0,3)和E(6,0)的直線分別與AB,BC交于點M,N.
(1)求直線DE的解析式和點M的坐標(biāo);
(2)若反比例函數(shù)(x>0)的圖象經(jīng)過點M,求該反比例函數(shù)的解析式,并通過計算判斷點N是否在該函數(shù)的圖象上;
(3)若反比例函數(shù)(x>0)的圖象與△MNB有公共點,請直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年河北省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•河北)如圖,在直角坐標(biāo)系中,矩形OABC的頂點O與坐標(biāo)原點重合,頂點A,C分別在坐標(biāo)軸上,頂點B的坐標(biāo)為(4,2).過點D(0,3)和E(6,0)的直線分別與AB,BC交于點M,N.
(1)求直線DE的解析式和點M的坐標(biāo);
(2)若反比例函數(shù)(x>0)的圖象經(jīng)過點M,求該反比例函數(shù)的解析式,并通過計算判斷點N是否在該函數(shù)的圖象上;
(3)若反比例函數(shù)(x>0)的圖象與△MNB有公共點,請直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《四邊形》(01)(解析版) 題型:選擇題

(2010•河北)如圖,兩個正六邊形的邊長均為1,其中一個正六邊形的一邊恰在另一個正六邊形的對角線上,則這個圖形(陰影部分)外輪廓線的周長是( )

A.7
B.8
C.9
D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年河北省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•河北)如圖,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=6,BC=8,,點M是BC的中點.點P從點M出發(fā)沿MB以每秒1個單位長的速度向點B勻速運動,到達(dá)點B后立刻以原速度沿BM返回;點Q從點M出發(fā)以每秒1個單位長的速度在射線MC上勻速運動.在點P,Q的運動過程中,以PQ為邊作等邊三角形EPQ,使它與梯形ABCD在射線BC的同側(cè).點P,Q同時出發(fā),當(dāng)點P返回到點M時停止運動,點Q也隨之停止.設(shè)點P,Q運動的時間是t秒(t>0).
(1)設(shè)PQ的長為y,在點P從點M向點B運動的過程中,寫出y與t之間的函數(shù)關(guān)系式(不必寫t的取值范圍);
(2)當(dāng)BP=1時,求△EPQ與梯形ABCD重疊部分的面積;
(3)隨著時間t的變化,線段AD會有一部分被△EPQ覆蓋,被覆蓋線段的長度在某個時刻會達(dá)到最大值,請回答:該最大值能否持續(xù)一個時段?若能,直接寫出t的取值范圍;若不能,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案