【題目】如圖,點P( +1, ﹣1)在雙曲線y= (x>0)上.
(1)求k的值;
(2)若正方形ABCD的頂點C,D在雙曲線y= (x>0)上,頂點A,B分別在x軸和y軸的正半軸上,求點C的坐標(biāo).
【答案】
(1)解:點P( , )在雙曲線 上,
將x= ,y= 代入解析式可得:
k=2;
(2)解:過點D作DE⊥OA于點E,過點C作CF⊥OB于點F,
∵四邊形ABCD是正方形,
∴AB=AD=BC,∠CBA=90°,
∴∠FBC+∠OBA=90°,
∵∠CFB=∠BOA=90°,
∴∠FCB+∠FBC=90°,
∴∠FBC=∠OAB,
在△CFB和△AOB中,
,
∴△CFB≌△AOB(AAS),
同理可得:△BOA≌△AED≌△CFB,
∴CF=OB=AE=b,BF=OA=DE=a,
設(shè)A(a,0),B(0,b),
則D(a+b,a)C(b,a+b),
可得:b(a+b)=2,a(a+b)=2,
解得:a=b=1.
所以點C的坐標(biāo)為:(1,2).
【解析】(1)由待定系數(shù)法把P坐標(biāo)代入解析式即可;(2)C、D均在雙曲線上,它們的坐標(biāo)就適合解析式,設(shè)出C坐標(biāo),再由正方形的性質(zhì)可得△CFB≌△AOB△BOA≌△AED≌△CFB,代入解析式得b(a+b)=2,a(a+b)=2,即可求出C坐標(biāo).
【考點精析】掌握正方形的性質(zhì)是解答本題的根本,需要知道正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在四邊形ABCD中,∠DAB被對角線AC平分,且AC2=ABAD,我們稱該四邊形為“可分四邊形”,∠DAB稱為“可分角”.
(1)如圖2,若四邊形ABCD為“可分四邊形”,∠DAB為“可分角”,且∠DCB=∠DAB,則∠DAB=°.
(2)如圖3,在四邊形ABCD中,∠DAB=60°,AC平分∠DAB,且∠BCD=150°,求證:四邊形ABCD為“可分四邊形”;
(3)現(xiàn)有四邊形ABCD為“可分四邊形”,∠DAB為“可分角”,且AC=4,BC=2,∠D=90°,求AD的長?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,∠B=50°,∠C=70°,AD是△ABC的角平分線,DE⊥AB于E點.
(1)求∠EDA的度數(shù);
(2)AB=10,AC=8,DE=3,求S△ABC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,E,F是對角線BD上的兩點,BE=DF,點G,H分別在BA和DC的延長線上,且AG=CH,連接GE,EH,HF,FG.
(1)求證:四邊形GEHF是平行四邊形;
(2)若點G,H分別在線段BA和DC上,其余條件不變,則(1)中的結(jié)論是否成立?(不用說明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,BC=16cm,AC=12cm,點P從點B出發(fā),沿BC以2cm/s的速度向點C移動,點Q從點C出發(fā),以1cm/s的速度向點A移動,若點P、Q分別從點B、C同時出發(fā),設(shè)運動時間為t s,當(dāng)t=時,△CPQ與△CBA相似.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c與x軸正半軸交于點A(3,0),與y軸交于點B(0,3),點P是x軸上一動點,過點P作x軸的垂線交拋物線于點C,交直線AB于點D,設(shè)P(x,0).
(1)求拋物線的函數(shù)表達(dá)式;
(2)當(dāng)0<x<3時,求線段CD的最大值;
(3)在△PDB和△CDB中,當(dāng)其中一個三角形的面積是另一個三角形面積的2倍時,求相應(yīng)x的值;
(4)過點B,C,P的外接圓恰好經(jīng)過點A時,x的值為 . (直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某體育用品商場采購員要到廠家批發(fā)購進(jìn)籃球和排球共100個,付款總額不得超過11815元.已知:廠家兩種球的批發(fā)價如(表)、商場在某兩天的零售信息如(表):
品名 | 廠家批發(fā)價(元/個) |
籃球 | 130 |
排球 | 100 |
(表)
籃球(個) | 排球(個) | 零售總價(元) | |
第一天 | 8 | 5 | 1880 |
第二天 | 6 | 10 | 2160 |
(表)
請解決以下問題:
(1)求出體育商場出售籃球和排球的零售單價.
(2)該采購員最多可從廠家購進(jìn)籃球多少個.
(3)若該商場把這100個球全部以零售價售出,為使商場的利潤不低于2580元,則采購員采購的方案有哪幾種?該商場最多可盈利__________元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們規(guī)定:a*b=,則下列等式中對于任意實數(shù) a、b、c 都成立的是( )
①a+(b*c)=(a+b)*(a+c) ②a*(b+c)=(a+b)*c
③a*(b+c)=(a*b)+(a*c) ④(a*b)+c= +(b*2c)
A. ①②③ B. ①②④ C. ①③④ D. ②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點O為直線AB上一點,過點O作射線OC,使∠AOC=60°.將一直角三角板MON的直角頂點放在點O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.
(1)求∠CON的度數(shù);
(2)如圖2是將圖1中的三角板繞點O按每秒15°的速度沿逆時針方向旋轉(zhuǎn)一周的情況,在旋轉(zhuǎn)的過程中,第t秒時,三條射線OA、OC、OM構(gòu)成兩個相等的角,求此時的t值
(3)將圖1中的三角板繞點O順時針旋轉(zhuǎn)至圖3(使ON在∠AOC的外部),圖4(使ON在∠AOC的內(nèi)部)請分別探究∠AOM與∠NOC之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com