精英家教網 > 初中數學 > 題目詳情
如圖甲,在△ABC中,AD⊥BC于D,AE平分∠BAC.
(1)若∠B=30°,∠C=70°,則∠DAE=
 
;
(2)若∠C-∠B=30°,則∠DAE=
 
;
(3)若∠C-∠B=a(∠C>∠B),求∠DAE的度數(用含a的代數式表示);
(4)如圖乙,當∠C<∠B時我們發(fā)現上述結論不成立,但為了使結論的統(tǒng)一與完美,我們不妨規(guī)定:角度也有正負,規(guī)定順時針為正,逆時針為負.例如:∠DAE=-18°,則∠EAD=18°,作出上述規(guī)定后,上述結論還成立嗎?
 
;若∠DAE=-7°,則∠B-∠C=
 
°.
精英家教網
分析:(1)根據三角形的內角和定理求得∠BAC和∠BAD的度數,根據角平分線定義求得∠BAE的度數,從而求得∠DAE的度數;
(2)根據三角形的內角和定理、角平分線定義可以求得∠DAE=
1
2
(∠C-∠B);
(3)和(2)的推理過程相同;
(4)和上述推理過程相同.
解答:解:(1)∵B=30°,∠C=70°,AD⊥BC于D,
∴∠BAC=80°,∠BAD=60°.
又AE平分∠BAC,
∴∠BAE=40°.
∴∠DAE=20°;

(2)∵AD⊥BC于D,AE平分∠BAC,
∴∠DAE=90°-∠AED
=90°-(∠B+∠BAE)
=90°-(∠B+
1
2
∠BAC)
=90°-(∠B+90°-
1
2
∠B-
1
2
∠C)
=
1
2
(∠C-∠B)
=15°;

(3)根據(2)的推理過程,得
∠DAE=
1
2
(∠C-∠B)=
1
2
a


(4)成立.
根據(2)的推理過程,得
∠DAE=
1
2
(∠C-∠B),
則∠B-∠C=2∠EAD=14°.
點評:此題綜合運用了三角形的內角和定理、三角形的外角的性質以及角平分線定義.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖甲,在△ABC中,∠ACB為銳角,點D為射線BC上一點,連接AD,以AD為一邊且在AD的右側作正方形ADEF.
解答下列問題:
(1)如果AB=AC,∠BAC=90°,
①當點D在線段BC上時(與點B不重合),如圖乙,線段CF,BD之間的位置關系為
 
,數量關系為
 

②當點D在線段BC的延長線時,如圖丙,①中的結論是否仍然成立,為什么?
(2)如果AB≠AC,∠BAC≠90°,點D在線段BC上運動.
試探究:當△ABC滿足一個什么條件時,CF⊥BC(點C,F重合除外)畫出相應圖形,并說明理由.(畫圖不寫作法)
(3)若AC=4
2
,BC=3,在(2)的條件下,設正方形ADEF的邊DE與線段CF相交于點P,求線段CP長的最大值.
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

27、如圖甲,在△ABC中,∠ACB為銳角,點D為射線BC上一動點,連接AD,以AD為一邊且在AD的右側作正方形ADEF.解答下列問題:
(1)如果AB=AC,∠BAC=90°,
①當點D在線段BC上時(與點B不重合),如圖乙,線段CF、BD之間的位置關系為
垂直
,數量關系為
相等

②當點D在線段BC的延長線上時,如圖丙,①中的結論是否仍然成立,為什么?
(2)如果AB≠AC,∠BAC≠90°點D在線段BC上運動.試探究:當△ABC滿足一個什么條件時,CF⊥BC(點C、F重合除外)?并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

24、(1)如圖甲,在△ABC中,AB=AC,AD平分∠BAC,則BD與CD相等嗎?請說明理由;
(2)若將圖甲變?yōu)閳D乙,其他條件不變,則BD與CD仍相等嗎?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖甲,在△ABC中,AB=AC,AB的垂直平分線交AB于N,交BC的延長線于M,∠A=40°.
(1)求∠NMB的大。
(2)如圖乙,如果將(1)中∠A的度數改為70°,其余條件不變,再求∠NMB的大。
(3)根據(1)(2)的計算,你能發(fā)現其中的蘊涵的規(guī)律嗎?請寫出你的猜想并證明.
(4)如圖丙,將(1)中的∠A改為鈍角,其余條件不變,對這個問題規(guī)律的認識是否需要加以修改?請你把∠A代入一個鈍角度數驗證你的結論.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖甲,在△ABC中,∠ACB為銳角.點D為射線BC上一動點,連接AD,以AD為一邊且在AD的右側作正方形ADEF.如果AB=AC,∠BAC=90°.
解答下列問題:
(1)當點D在線段BC上時(與點B不重合),如圖甲,線段CF、BD之間的位置關系為
垂直
垂直
,數量關系為
相等
相等

(2)當點D在線段BC的延長線上時,如圖乙,①中的結論是否仍然成立,為什么?(要求寫出證明過程)

查看答案和解析>>

同步練習冊答案