如圖,等腰三角形ABC中,AB=AC,∠A=20°,D是AB邊上一點(diǎn),AD=BC,連接CD,那么∠BDC的大小是________°.

30
分析:以AC為一邊在△ABC外側(cè)作正三角形△ACE,連接DE,根據(jù)已知可求得∠ABC的度數(shù),再根據(jù)等邊三角形的性質(zhì)可求得∠EAD的度數(shù),從而利用SAS判定△ABC≌△EAD,由全等三角形的性質(zhì)及等腰三角形的性質(zhì)即可求得∠ADE,∠EDC的度數(shù),再根據(jù)三角形的外角的性質(zhì)即不難求解.
解答:以AC為一邊在△ABC外側(cè)作正三角形△ACE,連接DE.

∵AB=AC,頂角∠A=20°,
∴∠ABC=80°,
∵△ACE是正三角形,
∴AC=AE=CE,∠EAC=60°,
∴∠EAD=80°,AE=AB,
∵AD=BC,
∴△ABC≌△EAD,
∴∠EDA=∠ACB=80°,∠AED=∠BAC=20°,ED=AC,
∴∠DEC=40°,DE=EC,
∴∠EDC=∠ECD=70°,
∴∠BDC=180°-∠ADE-∠EDC=180°-80°-70°=30°.
故答案為:30°.
點(diǎn)評(píng):此題主要考查等腰三角形的性質(zhì),難度較大,關(guān)鍵掌握全等三角形的性質(zhì)及等邊三角形的性質(zhì)的綜合運(yùn)用,此題的關(guān)鍵是輔助線的添加.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

9、如圖,等腰三角形ABC中,AB=AC,∠A=44°,CD⊥AB于D,則∠DCB等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,等腰三角形ABC的頂角為120°,底邊BC=
3
2
,則腰長(zhǎng)AB為( 。
A、
2
2
B、
3
2
C、
1
2
D、
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,等腰三角形與正三角形的形狀有著差異,我們把它與正三角形的接近程度稱為等腰三角形的“正度”,在研究“正度”時(shí),應(yīng)符合下面四個(gè)條件:①“正度”的值是非負(fù)數(shù);②“正度”值越小,表示等腰三角形越接近正三角形;③相似的等腰三角形“正度”要相等;④正三角形的“正度”是0.例如:
設(shè)等腰三角形的底和腰分別為a,b,底角和頂角分別為α,β.
可用|sinα-
3
2
|
表示等腰三角形的“正度”,|sinα-
3
2
|
的值越小,α越接近60°,表示等腰三角形越接近正三角形,且當(dāng)兩個(gè)等腰三角形相似時(shí),它們的底角相等,顯然,它們的“正度”|sinα-
3
2
|
也相等,當(dāng)α=60°時(shí),|sinα-
3
2
|=0

而如果用
a
b
表示等腰三角形的“正度”,就不符合要求,因?yàn)榇藭r(shí)正三角形的正度是1!
解答下列問(wèn)題:
甲同學(xué)認(rèn)為:可用|a-b|表示等腰三角形的“正度”,|a-b|的值越小,表示等腰三角形越接近正三角形;
乙同學(xué)認(rèn)為:可用|α-β|表示等腰三角形的“正度”,|α-β|的值越小,表示等腰三角形越接近正三角形.
精英家教網(wǎng)(1)他們的說(shuō)法合理嗎?為什么?
(2)對(duì)你認(rèn)為不合理的方案加以改進(jìn),使其合理;
(3)請(qǐng)你再給出一種衡量等腰三角形“正度”的合理的表達(dá)式,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,等腰三角形ABC中,AB=AC,AH垂直BC,點(diǎn)E是AH上一點(diǎn),延長(zhǎng)AH至點(diǎn)F,使FH=EH,
(1)求證:四邊形EBFC是菱形;
(2)如果∠BAC=∠ECF,求證:AC⊥CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,等腰三角形ABC(AB=AC)的底角為50°,繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)一定角度后得△AB′C′,那么△AB′C′繞點(diǎn)A旋轉(zhuǎn)
40
40
度后AC⊥B′C′.

查看答案和解析>>

同步練習(xí)冊(cè)答案