已知b>0時(shí),二次函數(shù)y=ax2+bx+a2-1的圖象如下列四個(gè)圖之一所示.
根據(jù)圖分析,a的值等于( )
A.-2 B.-1 C.1 D.2
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:單選題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:河北省模擬題 題型:解答題
閱讀以下的材料:
如果兩個(gè)正數(shù)a,b,即a>0,b>0,有下面的不等式:
當(dāng)且僅當(dāng)a=b時(shí)取到等號(hào)
我們把叫做正數(shù)a,b的算術(shù)平均數(shù),把叫做正數(shù)a,b的幾何平均數(shù),于是上述不等式可表述為:兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于(即大于或等于)它們的幾何平均數(shù)。它在數(shù)學(xué)中有廣泛的應(yīng)用,是解決最值問題的有力工具。下面舉一例子:
例:已知x>0,求函數(shù)的最小值。
解:令a=x,b=,則有,得,當(dāng)且僅當(dāng)時(shí),即x=2時(shí),函數(shù)有最小值,最小值為2。
根據(jù)上面回答下列問題:
①已知x>0,則當(dāng)x=____時(shí),函數(shù)取到最小值,最小值為____;
②用籬笆圍一個(gè)面積為100m2的矩形花園,問這個(gè)矩形的長(zhǎng)、寬各為多少時(shí),所用的籬笆最短,最短的籬笆周長(zhǎng)是多少;
③已知x>0,則自變量x取何值時(shí),函數(shù)取到最大值,最大值為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知b>0時(shí),二次函數(shù)y=ax2+bx+a2-1的圖象如下列四個(gè)圖之一所示.
根據(jù)圖分析,a的值等于( )
A.-2 B.-1 C.1 D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年北京市西城區(qū)九年級(jí)下學(xué)期期末檢測(cè)數(shù)學(xué)卷 題型:單選題
已知b>0時(shí),二次函數(shù)y=ax2+bx+a2-1的圖象如下列四個(gè)圖之一所示.
根據(jù)圖分析,a的值等于( )
A.-2 | B.-1 | C.1 | D.2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com