如圖,PA、PB是⊙O的切線,A、B為切點,C是劣弧AB上的一點,∠P=50°,∠C=______.
連結(jié)OA、OB,在優(yōu)弧AB上取點D,連結(jié)DA、DB,如圖,
∵PA、PB是⊙O的切線,
∴∠OAP=∠OBP=90°,
∴∠AOB=180°-∠P=180°-50°=130°,
∴∠D=
1
2
∠AOB=65°,
∴∠C=180°-∠D=115°.
故答案為115°.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

在Rt△ABC中,∠C=90°,AC=6,BC=8,點O在CB上,且AO平分∠BAC,CO=3(如圖所示),以點O為圓心,r為半徑畫圓.
(1)r取何值時,⊙O與AB相切;
(2)r取何值時,⊙O與AB有兩個公共點;
(3)當⊙O與AB相切時,設切點為D,在BC上是否存在點P,使△APD的面積為△ABC的面積的一半?若存在,求出CP的長;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知⊙O的直徑AB垂直于弦CD于點E,過C點作CGAD交AB的延長線于點G,連接CO并延長交AD于點F,且CF⊥AD.
(1)試問:CG是⊙O的切線嗎?說明理由;
(2)請證明:E是OB的中點;
(3)若AB=8,求CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在平面直角坐標系xOy中,A(2,0),B(0,2),⊙C的圓心為點C(-1,0),半徑為1.若D是⊙C上的一個動點,線段DA與y軸交于點E,則△ABE面積的最大值是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,△ABC中,AB=AC,以AB為直徑作⊙O,與BC交于點D,過D作AC的垂線,垂足為E.
證明:(1)BD=DC;(2)DE是⊙O切線.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,AB是⊙O的直徑,直線l交⊙O于C1、C2,AD⊥l,垂足為D.
(1)求證:AC1•AC2=AB•AD.
(2)若將直線l向上平移(如圖2),交⊙O于C1、C2,使弦C1C2與直徑AB相交(交點不與A、B重合),其他條件不變,請你猜想,AC1、AC2、AB、AD之間的關系,并說明理由.
(3)若將直線l平移到與⊙O相切時,切點為C,其他條件不變,請你在圖3上畫出變化后的圖形,標好相應的字母并猜想AC、AB、AD的關系是什么?(只寫出關系,不加以說明)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC中,∠BCA=90°,以BC為直徑的⊙O交AB于點P,Q是AC的中點.判斷直線PQ與⊙O的位置關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知:如圖,在同心圓中,大圓的弦AB,CD分別與小圓相切于點E,F(xiàn),則弦AB,CD的大小關系是( 。
A.AB>CDB.AB=CDC.AB<CDD.無法確定

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,直線l1l2,⊙O與l1和l2分別相切于點A和點B.點M和點N分別是l1和l2上的動點,MN沿l1和l2平移.⊙O的半徑為1,∠1=60°.下列結(jié)論錯誤的是(  )
A.MN=
4
3
3
B.l1和l2的距離為2
C.若∠MON=90°,則MN與⊙O相切
D.若MN與⊙O相切,則AM=
3

查看答案和解析>>

同步練習冊答案