【題目】已知:二次函數(shù)y=ax2+bx的圖象經(jīng)過(guò)點(diǎn)M(1,n)、N(3,n).
(1)求b與a之間的關(guān)系式;
(2)若二次函數(shù)y=ax2+bx的圖象與x軸交于點(diǎn)A、B,頂點(diǎn)為C,△ABC為直角三角形,求該二次函數(shù)的關(guān)系式.

【答案】
(1)解:∵圖象經(jīng)過(guò)M(1,n)、N(3,n),

∴圖象的對(duì)稱(chēng)軸為直線(xiàn)x=2,

∴﹣ =2,所以b=﹣4a;


(2)解:y=ax2﹣4ax的圖象與x軸交于點(diǎn)A(0,0)、B(4,0),

∵△ABC為直角三角形,

∴頂點(diǎn)C坐標(biāo)為(2,2)或(2,﹣2),

代入得4a﹣8a=2或4a﹣8a=﹣2,

∴a=﹣ ,

∴該二次函數(shù)的關(guān)系式為:y=﹣ x2+2x或y= x2﹣2x.


【解析】(1)直接利用二次函數(shù)對(duì)稱(chēng)性得出對(duì)稱(chēng)軸,進(jìn)而得出答案;(2)利用等腰直角三角形的性質(zhì)得出C點(diǎn)坐標(biāo),進(jìn)而得出答案.
【考點(diǎn)精析】利用拋物線(xiàn)與坐標(biāo)軸的交點(diǎn)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知一元二次方程的解是其對(duì)應(yīng)的二次函數(shù)的圖像與x軸的交點(diǎn)坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點(diǎn).當(dāng)b2-4ac>0時(shí),圖像與x軸有兩個(gè)交點(diǎn);當(dāng)b2-4ac=0時(shí),圖像與x軸有一個(gè)交點(diǎn);當(dāng)b2-4ac<0時(shí),圖像與x軸沒(méi)有交點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AB=3,AD=1,AB在數(shù)軸上,若以點(diǎn)A為圓心,對(duì)角線(xiàn)AC的長(zhǎng)為半徑作弧交數(shù)軸的正半軸于M,則點(diǎn)M的表示的數(shù)為________________

【答案】

【解析】ACAM,∴AM

型】填空
結(jié)束】
11

【題目】ABC中,AB10,AC2BC邊上的高AD6,則另一邊BC等于_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某水果商從批發(fā)市場(chǎng)用8000元購(gòu)進(jìn)了大櫻桃和小櫻桃各200千克,大櫻桃的進(jìn)價(jià)比小櫻桃的進(jìn)價(jià)每千克多20元.大櫻桃售價(jià)為每千克40元,小櫻桃售價(jià)為每千克16元.

(1)大櫻桃和小櫻桃的進(jìn)價(jià)分別是每千克多少元?銷(xiāo)售完后,該水果商共賺了多少元錢(qián)?

(2)該水果商第二次仍用8000元錢(qián)從批發(fā)市場(chǎng)購(gòu)進(jìn)了大櫻桃和小櫻桃各200千克,進(jìn)價(jià)不變,但在運(yùn)輸過(guò)程中小櫻桃損耗了20%.若小櫻桃的售價(jià)不變,要想讓第二次賺的錢(qián)不少于第一次所賺錢(qián)的90%,大櫻桃的售價(jià)最少應(yīng)為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,(1)已知∠ABC,射線(xiàn)EDAB,過(guò)點(diǎn)E作∠DEF=∠ABC,試說(shuō)明BCEF;

(2)如圖②,已知∠ABC,射線(xiàn)EDAB,∠ABC+∠DEF=180°.判斷直線(xiàn)BC與直線(xiàn)EF的位置關(guān)系,并說(shuō)明理由;

(3)根據(jù)以上探究,你發(fā)現(xiàn)了一個(gè)什么結(jié)論?請(qǐng)你寫(xiě)出來(lái);

(4)如圖③,已知ACBCCDAB,DEAC,HFAB,若∠1=48°,試求∠2的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C=ABC,BEAC,垂足為點(diǎn)E,BDE是等邊三角形,若AD=4,則線(xiàn)段BE的長(zhǎng)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,填空:

(1)若∠4=∠3,則_________,理由是______;

(2)若∠2=∠E,則_______,理由是____;

(3)若∠A=∠ABE=180°,則_______,理由是____;

(4)若∠2=∠____,則DA∥EB,理由是____;

(5)若∠DBC+∠_____=180°,則DB∥EC,理由是____;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,兩個(gè)全等的等腰直角三角板(斜邊長(zhǎng)為2)如圖放置,其中一塊三角板45°角的頂點(diǎn)與另一塊三角板ABC的直角頂點(diǎn)A重合.若三角板ABC固定,當(dāng)另一個(gè)三角板繞點(diǎn)A旋轉(zhuǎn)時(shí),它的直角邊和斜邊所在的直線(xiàn)分別與邊BC交于點(diǎn)E、F.設(shè)BF=x,CE=y,則y關(guān)于x的函數(shù)圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線(xiàn)y=ax2+bx經(jīng)過(guò)兩點(diǎn)A(﹣1,1),B(2,2).過(guò)點(diǎn)B作BC∥x軸,交拋物線(xiàn)于點(diǎn)C,交y軸于點(diǎn)D.

(1)求此拋物線(xiàn)對(duì)應(yīng)的函數(shù)表達(dá)式及點(diǎn)C的坐標(biāo);
(2)若拋物線(xiàn)上存在點(diǎn)M,使得△BCM的面積為 ,求出點(diǎn)M的坐標(biāo);
(3)連接OA、OB、OC、AC,在坐標(biāo)平面內(nèi),求使得△AOC與△OBN相似(邊OA與邊OB對(duì)應(yīng))的點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠BAC=90°,∠B=60°,△AB′C′可以由△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到(點(diǎn)B′與點(diǎn)B是對(duì)應(yīng)點(diǎn),點(diǎn)C′與點(diǎn)C是對(duì)應(yīng)點(diǎn)),連接CC′,則∠CC′B′的度數(shù)是(
A.45°
B.30°
C.25°
D.15°

查看答案和解析>>

同步練習(xí)冊(cè)答案