【題目】如圖,AB是⊙O的直徑,D、E為⊙O上位于AB異側的兩點,連接BD并延長至點C,使得CD=BD,連接AC交⊙O于點F,連接AE、DE、DF.
(1)證明:∠E=∠C;
(2)若∠E=55°,求∠BDF的度數(shù);
(3)設DE交AB于點G,若DF=4,cosB= ,E是 的中點,求EGED的值.
【答案】
(1)
證明:連接AD,
∵AB是⊙O的直徑,
∴∠ADB=90°,即AD⊥BC,
∵CD=BD,
∴AD垂直平分BC,
∴AB=AC,
∴∠B=∠C,
又∵∠B=∠E,
∴∠E=∠C;
(2)
解:∵四邊形AEDF是⊙O的內接四邊形,
∴∠AFD=180°-∠E,
又∵∠CFD=180°-∠AFD,
∴∠CFD=∠E=55°,
又∵∠E=∠C=55°,
∴∠BDF=∠C+∠CFD=110°;
(3)
解:連接OE,
∵∠CFD=∠E=∠C,
∴FD=CD=BD=4,
在Rt△ABD中,cosB= ,BD=4,
∴AB=6,
∵E是 的中點,AB是⊙O的直徑,
∴∠AOE=90°,
∵AO=OE=3,
∴AE=3 ,
∵E是 的中點,
∴∠ADE=∠EAB,
∴△AEG∽△DEA,
∴ ,
即EGED=AE2=18.
【解析】(1)直接利用圓周角定理得出AD⊥BC,勁兒利用線段垂直平分線的性質得出AB=AC,即可得出∠E=∠C;(2)利用圓內接四邊形的性質得出∠AFD=180°﹣∠E,進而得出∠BDF=∠C+∠CFD,即可得出答案;(3)根據(jù)cosB= ,得出AB的長,再求出AE的長,進而得出△AEG∽△DEA,求出答案即可.此題主要考查了圓的綜合題、圓周角定理以及相似三角形的判定與性質以及圓內接四邊形的性質等知識,根據(jù)題意得出AE,AB的長是解題關鍵.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一只甲蟲在5×5的方格(每小格邊長為1)上沿著網(wǎng)格線運動.它從A處出發(fā)去看望B、C、D處的其它甲蟲,規(guī)定:向上向右走為正,向下向左走為負.如果從A到B記為:A→B(+1,+4),從B到A記為:B→A(-1,-4),其中第一個數(shù)表示左右方向,第二個數(shù)表示上下方向.
(1)圖中A→C( , ),B→C( , ),C→ (+1, );
(2)若這只甲蟲從A處去甲蟲P處的行走路線依次為(+2,+2),(+2,-1),(-2,+3),(-1,-2),請在圖中標出P的位置;
(3)若這只甲蟲的行走路線為A→B→C→D,請計算該甲蟲走過的路程;
(4)若圖中另有兩個格點M、N,且M→A(3-a,b-4),M→N(5-a,b-2),則N→A應記為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,直線y=x經(jīng)過點A,作AB⊥x軸于點B,將△ABO繞點B逆時針旋轉60°得到△CBD.若點B的坐標為(2,0),則點C的坐標為( )
A. (﹣1,) B. (﹣2,) C. (﹣,1) D. (﹣,2)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算及解方程:
(1)-4-28-(-19)+(-24)
(2)-12-(-2)3-2(-3)
(3)(a+3b)-(a-b)
(4)3(m2-2n2)-2(m2-3n2)
(5)2(2x﹣3)﹣3=2﹣3(x﹣1)
(6)-1=
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列各式:(a×b)2=a2×b2、(a×b)3=a3×b3、(a×b)4=a4×b4,
(1)用具體數(shù)值驗證上述等式是否成立(寫出其中一個驗證過程)
(2)通過上述驗證,猜一猜:(a×b)100= ,歸納得出:(a×b)n= ;
(3)請應用上述性質計算:.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】同學們都知道,|2-(-1)|表示2與-1的差的絕對值,實際上位可理解為在數(shù)軸上正數(shù)2對應的點與負數(shù)一1對應的點之間的距離,試探索:
(1)|2-(-1)|=______;如果|x-1|=2,則x=______.
(2)求|x-2|+|x-4|的最小值,并求此時x的取值范圍;
(3)由以上探素已知(|x-2|+|x+4|)(|y-1|+|y-6|)=10,求x+y的最大值與最小值;
(4)由以上探索及猜想,計算|x-1|+|x-2|+|x-3|+…+|x-2017|+|x-2018|的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在△ABC中,是邊上的中點,,請你添加一個條件,使成立.你添加的條件是_______________(不再添加輔助線和字母).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在長方形ABCD中,AB=8cm,BC=6cm.點E是CD邊上的一點,且DE=2cm,動點P從A點出發(fā),以2cm/s的速度沿A→B→C→E運動,最終到達點E.當△APE的面積等于20cm2時,則點P運動的時間為___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】根據(jù)下列語句畫圖,并回答相應問題:已知:∠AOB.
(1)作射線 OA 的反向延長線 OE;
(2)向上作射線 OC,使∠AOC=90°;
(3)作射線 OD,使∠COD=∠AOB;
(4)圖中共有 個角;(包括平角)
(5)銳角是 ,鈍角是 ,直角是 ,平角是 ;
(6)你能找出圖中所有相等的角嗎(除∠COD=∠AOB 外)盡可能都寫出來;
(7)與∠COD 互余的角有 個,互補的角有 個.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com