精英家教網 > 初中數學 > 題目詳情
如圖,在△ABC中,AB=AC,AE是角平分線,AD是△ABC外角∠CAG的平分線,CF⊥AD于F.
(1)試說明四邊形AECF為矩形;
(2)當△ABC滿足什么條件時,四邊形AECF是一個正方形?請說明理由.
(1)因為∠BAE=∠CAE,∠GAD=∠CAD,
所以2(∠CAE+∠CAD)=180°,
所以∠CAE十∠CAD=90°,
即∠EAD=90°,
因為AB=AC,AE是角平分線,
所以AE⊥BC,
由于CF⊥AD,
所以四邊形AECF是矩形.

(2)當∠BAC=90°,即△ABC是直角三角形時,四邊形AECF是正方形,
理由:由于∠BAC=90°,
所以∠CAE=45°,
所以∠CAD=45°,
因為∠AEC=∠AFC=90°,AC=AC,
所以△AEC≌△AFC,
所以AE=AF,
所以四邊形AECF是正方形.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

如圖,將一三角板放在邊長為1的正方形ABCD上,并使它的直角頂點P在對角線AC上滑動,直角的一邊始終經過點B,另一邊與射線DC相交于Q.
探究:設A、P兩點間的距離為x.
(1)當點Q在邊CD上時,線段PQ與PB之間有怎樣的數量關系?試證明你的猜想;
(2)當點Q在邊CD上時,設四邊形PBCQ的面積為y,求y與x之間的函數關系,并寫出函數自變量x的取值范圍;
(3)當點P在線段AC上滑動時,△PCQ是否可能成為等腰三角形?如果可能,指出所有能使△PCQ成為等腰三角形的點Q的位置.并求出相應的x值,如果不可能,試說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知:在△ABC中,∠ACB=90°,AC=BC,現將一塊邊長足夠大的直角三角板的直角頂點置于AB的中點O處,兩直角邊分別經過點B、C,然后將三角板繞點O按順時針方向旋轉一個角度反(0°<a<90°),旋轉后,直角三角板的直角邊分別與AC、BC相交于點K、H,四邊形CHOK是旋轉過程中三角板與△ABC的重疊部分(如圖1所示).那么,在上述旋轉過程中:
(1)如圖1,線段BH與CK具有怎樣的數量關系?四邊形CHOK的面積是否發(fā)生變化?請說明你發(fā)現的結論的理由.
(2)如圖2,連接HK,
①若AK=12,BH=5,求△OKH的面積;
②若AC=BC=4,設BH=x,當△CKH的面積為2時,求x的值,并說出此時四邊形CHOK是什么特殊四邊形.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,正方形ABCD繞點A逆時針旋轉n°后得到正方形AEFG,邊EF與CD交于點O.
(1)請在圖中連接兩條線段(正方形的對角線除外).要求:①所連接的兩條線段是以圖中已標有字母的點為端點;②所連接的兩條線段互相垂直.
(2)若正方形的邊長為2cm,重疊部分(四邊形AEOD)的面積為
4
3
3
cm2
,旋轉的角度n是多少度?請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如圖,在正方形ABCD中,點E、F分別在CD、BC上,且BF=CE,連結BE、AF相交于點G,則下列結論:①BE=AF;②∠DAF=∠BEC;③∠AFB+∠BEC=90°;④AF⊥BE中正確的有(  )
A.①②③B.②③④C.①②③④D.①②④

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如圖,設F為正方形ABCD上一點,CE⊥CF交AB的延長線于E,若正方形ABCD的面積為64,△CEF的面積為50,則△CBE的面積為( 。
A.20B.24C.25D.26

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖,設正方形ABCD的邊長為2,以對角線AC為邊作第二個正方形ACEF,再以對角線AE為邊作第三個正方形AEGH,如此下去…,根據以上規(guī)律寫出的表達式:an=______.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖,已知P是正方形ABCD對角線BD上一點,且BP=BC,則∠ACP度數是______度.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

若正方形的邊長為4,則它的對角線長是______.

查看答案和解析>>

同步練習冊答案