已知,在邊長為6的正方形ABCD的兩側(cè)如圖作正方形BEFG、正方形DMNK,恰好使得N、A、F三點在一直線上,連接MF交線段AD于點P,連接NP,設(shè)正方形BEFG的邊長為x,正方形DMNK的邊長為y,
(1)求y關(guān)于x的函數(shù)關(guān)系式及自變量x的取值范圍;
(2)當(dāng)△NPF的面積為32時,求x的值;
(3)以P為圓心,AP為半徑的圓能否與以G為圓心,GF為半徑的圓相切?若能請求x的值;若不能,請說明理由.

解:(1)∵四邊形BEFG、DMNK、ABCD是正方形,
∴∠E=∠F=90°,AE∥MC,MC∥NK,
∴AE∥NK,
∴∠KNA=∠EAF,
∴△KNA∽△EAF,

,
∴y=x+6(0<x≤6);

(2)由(1)可知:NK=AE,
∵四邊形DMNK是正方形,
∴AP∥NM,
,
∴AN=AF,
∵NK=AE,∠K=∠E,
∴△KNA≌△EAF,
∴FP=PM,
∴S△MNP=S△NPF=32,
∴S正方形DMNK=2S△MNP=64,
∴y=8,
∴x=2;

(3)連接PG,延長FG交AD于H點,則GH⊥AD.
易知:;
HG=6;
①當(dāng)兩圓外切時,在Rt△GHP中,PH2+HG2=PG2,
∵y=x+6,
代入整理得:x2+6x-18=0,
解得:(負(fù)值舍去),
②當(dāng)兩圓內(nèi)切時,在Rt△GHP中,PH2+HG2=PG2,
∵y=x+6,
代入整理得:36=0,
方程無解,
所以,當(dāng)時,這兩個圓相切.
分析:(1)由正方形的性質(zhì)和三角形相似解答即可;
(2)由正方形的性質(zhì)和平行線分線段成比例以及三角形的面積解答即可;
(3)由兩圓相切的性質(zhì),正方形的性質(zhì)以及勾股定理解決問題.
點評:此題主要考查正方形的性質(zhì),三角形相似的判定與性質(zhì),勾股定理以及兩圓相切的性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知△ABC是邊長為4的等邊三角形,BC在x軸上,點D為BC的中點,點A在第一象限內(nèi),AB與精英家教網(wǎng)y軸的正半軸相交于點E,點B(-1,0),P是AC上的一個動點(P與點A、C不重合)
(1)求點A、E的坐標(biāo);
(2)若y=-
6
3
7
x2+bx+c過點A、E,求拋物線的解析式;
(3)連接PB、PD,設(shè)L為△PBD的周長,當(dāng)L取最小值時,求點P的坐標(biāo)及L的最小值,并判斷此時點P是否在(2)中所求的拋物線上,請充分說明你的判斷理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在邊長為a的正△ABC中,分別以A,B,C點為圓心,
1
2
a
長為半徑作
DE
,
EF
,
FD
,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第2章《二次函數(shù)》中考題集(46):2.7 最大面積是多少(解析版) 題型:解答題

已知△ABC是邊長為4的等邊三角形,BC在x軸上,點D為BC的中點,點A在第一象限內(nèi),AB與y軸的正半軸相交于點E,點B(-1,0),P是AC上的一個動點(P與點A、C不重合)
(1)求點A、E的坐標(biāo);
(2)若y=x2+bx+c過點A、E,求拋物線的解析式;
(3)連接PB、PD,設(shè)L為△PBD的周長,當(dāng)L取最小值時,求點P的坐標(biāo)及L的最小值,并判斷此時點P是否在(2)中所求的拋物線上,請充分說明你的判斷理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第2章《二次函數(shù)》中考題集(50):2.8 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

已知△ABC是邊長為4的等邊三角形,BC在x軸上,點D為BC的中點,點A在第一象限內(nèi),AB與y軸的正半軸相交于點E,點B(-1,0),P是AC上的一個動點(P與點A、C不重合)
(1)求點A、E的坐標(biāo);
(2)若y=x2+bx+c過點A、E,求拋物線的解析式;
(3)連接PB、PD,設(shè)L為△PBD的周長,當(dāng)L取最小值時,求點P的坐標(biāo)及L的最小值,并判斷此時點P是否在(2)中所求的拋物線上,請充分說明你的判斷理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第20章《二次函數(shù)和反比例函數(shù)》中考題集(46):20.5 二次函數(shù)的一些應(yīng)用(解析版) 題型:解答題

已知△ABC是邊長為4的等邊三角形,BC在x軸上,點D為BC的中點,點A在第一象限內(nèi),AB與y軸的正半軸相交于點E,點B(-1,0),P是AC上的一個動點(P與點A、C不重合)
(1)求點A、E的坐標(biāo);
(2)若y=x2+bx+c過點A、E,求拋物線的解析式;
(3)連接PB、PD,設(shè)L為△PBD的周長,當(dāng)L取最小值時,求點P的坐標(biāo)及L的最小值,并判斷此時點P是否在(2)中所求的拋物線上,請充分說明你的判斷理由.

查看答案和解析>>

同步練習(xí)冊答案