【題目】如圖,在△ABC中,點(diǎn)D、E分別是邊AB,BC的中點(diǎn).若△DBE的周長(zhǎng)是6,則△ABC的周長(zhǎng)是(

A.8
B.10
C.12
D.14

【答案】C
【解析】解:∵點(diǎn)D、E分別是邊AB,BC的中點(diǎn),
∴DE是三角形BC的中位線,AB=2BD,BC=2BE,
∴DE∥BC且DE= AC,
又∵AB=2BD,BC=2BE,
∴AB+BC+AC=2(BD+BE+DE),
即△ABC的周長(zhǎng)是△DBE的周長(zhǎng)的2倍,
∵△DBE的周長(zhǎng)是6,
∴△ABC的周長(zhǎng)是:
6×2=12.
故選:C.
首先根據(jù)點(diǎn)D、E分別是邊AB,BC的中點(diǎn),可得DE是三角形BC的中位線,然后根據(jù)三角形中位線定理,可得DE= AC,最后根據(jù)三角形周長(zhǎng)的含義,判斷出△ABC的周長(zhǎng)和△DBE的周長(zhǎng)的關(guān)系,再結(jié)合△DBE的周長(zhǎng)是6,即可求出△ABC的周長(zhǎng)是多少.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知四邊形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD為銳角.
(1)求證:AD⊥BF;
(2)若BF=BC,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,雙曲線y= (x>0)與直線EF交于點(diǎn)A,點(diǎn)B,且AE=AB=BF,連結(jié)AO,BO,它們分別與雙曲線y= (x>0)交于點(diǎn)C,點(diǎn)D,則:

(1)①AB與CD的位置關(guān)系是
②四邊形ABDC的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)B,E,C,F(xiàn)在一條直線上,AB=DF,AC=DE,∠A=∠D.

(1)求證:AC∥DE;
(2)若BF=13,EC=5,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程
(1)x2+4x+1=0
(2)(x﹣1)2+x=1
(3)3x2﹣2x﹣4=0
(4)x2﹣7x+12=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣3x+3與x軸、y軸分別交于A、B兩點(diǎn),以AB為邊在第一象限作正方形ABCD,點(diǎn)D在雙曲線 (k≠0)上.將正方形沿x軸負(fù)方向平移a個(gè)單位長(zhǎng)度后,點(diǎn)C恰好落在該雙曲線上,則a的值是( )

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,點(diǎn)E為AB的中點(diǎn),F(xiàn)為BC上任意一點(diǎn),把△BEF沿直線EF翻折,點(diǎn)B的對(duì)應(yīng)點(diǎn)B′落在對(duì)角線AC上,則與∠FEB一定相等的角(不含∠FEB)有(

A.2個(gè)
B.3個(gè)
C.4個(gè)
D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB=3cm,BC=5cm,對(duì)角線AC,BD相交于點(diǎn)O,則OA的取值范圍是(

A.2cm<OA<5cm
B.2cm<OA<8cm
C.1cm<OA<4cm
D.3cm<OA<8cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了了解本校八年級(jí)學(xué)生課外閱讀的喜好,隨機(jī)抽取該校八年級(jí)部分學(xué)生進(jìn)行問卷調(diào)査(每人只選一種書籍).如圖是整理數(shù)據(jù)后繪制的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中提供的信息,解答下列問題:
(1)這次活動(dòng)一共調(diào)查了名學(xué)生;
(2)在扇形統(tǒng)計(jì)圖中,“其他”所在扇形圓心角等于度;
(3)補(bǔ)全條形統(tǒng)計(jì)圖;
(4)若該年級(jí)有600名學(xué)生,請(qǐng)你估計(jì)該年級(jí)喜歡“科普常識(shí)”的學(xué)生人數(shù)約是人.

查看答案和解析>>

同步練習(xí)冊(cè)答案