在△ABC中,D為AB的中點(diǎn),E為AC上一點(diǎn),CE=數(shù)學(xué)公式AC,BE、CD交于點(diǎn)O,BE=5cm,則OE=________cm.

1.25
分析:過(guò)D作DF∥BE,由于D是AB中點(diǎn),那么DF就是△ABE的中位線(xiàn),利用三角形中位線(xiàn)定理,可求DF,而CE=AC,AF=EF,可證出CE=EF,即E是CF中點(diǎn),再次使用三角形中位線(xiàn)定理,可求出OE.
解答:解:如圖,過(guò)D作DF∥BE,那么DF就是三角形ABE的中位線(xiàn),
∴DF=BE,AF=EF
又∵CE=AC
∴CE=EF
∴OE就是三角形CDF的中位線(xiàn),
∴OE=DF=BE=1.25cm.
故答案為1.25.
點(diǎn)評(píng):本題主要考查了三角形中位線(xiàn)的應(yīng)用,根據(jù)題中給出的條件正確地作出中位線(xiàn)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,在△ABC中,AD為BC邊上的高,∠B=45°,∠C=30°,AD=2.求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:在△ABC中,AD為∠BAC的平分線(xiàn),以C為圓心,CD為半徑的半圓交BC的延長(zhǎng)線(xiàn)于點(diǎn)E,交精英家教網(wǎng)AD于點(diǎn)F,交AE于點(diǎn)M,且∠B=∠CAE,F(xiàn)E:FD=4:3.
(1)求證:AF=DF;
(2)求∠AED的余弦值;
(3)如果BD=10,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

A.某中學(xué)師生在勞動(dòng)基地活動(dòng)時(shí),看到木工師傅在材料邊角處畫(huà)直角時(shí),用了一種“三弧法”.方法是:
①畫(huà)線(xiàn)段AB,分別以A,B為圓心,AB長(zhǎng)為半徑畫(huà)弧相交于C;
②以C為圓心,仍以AB長(zhǎng)為半徑畫(huà)弧交AC的延長(zhǎng)線(xiàn)于D;
③連接DB.則∠ABD就是直角.
(1)請(qǐng)你就∠ABD是直角作出合理解釋?zhuān)?BR>(2)現(xiàn)有一長(zhǎng)方形木塊的殘留部分如圖,其中AB,CD整齊且平行,BC,AD是參差不齊的毛邊.請(qǐng)你在毛邊附近用尺規(guī)畫(huà)一條與AB,CD都垂直的邊(不寫(xiě)作法,保留作圖痕跡);
精英家教網(wǎng)
B.如圖,在△ABC中,D為AC上一點(diǎn),CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD,E為垂足,連接AE.
(1)寫(xiě)出圖中所有相等的線(xiàn)段,并選擇其中一對(duì)給予證明;
(2)圖中有無(wú)相似三角形?若有,請(qǐng)寫(xiě)出一對(duì);若沒(méi)有,請(qǐng)說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,AD為∠BAC的平分線(xiàn),DE⊥AB于E,DF⊥AC于F,△ABC面積是76cm2,AB=20cm,AC=18cm,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,∠C為直角,AC=9,AB=15,則∠A的平分線(xiàn)AD≈
 

查看答案和解析>>

同步練習(xí)冊(cè)答案