【題目】如圖,在ABC中,AB=AC,點DBC邊的中點,連接AD,分別過點A,CAEBC,CEAD交于點E,連接DE,交AC于點O

1)求證:四邊形ADCE是矩形;

2)若AB=10sinCOE=,求CE的長.

【答案】1)證明見解析;(2CE=

【解析】

(1)根據(jù)等腰三角形的性質(zhì)得到AD⊥BC于點D,根據(jù)矩形的判定定理即可得到結(jié)論;

(2)過點E作EF⊥AC于F.解直角三角形即可得到結(jié)論.

(1)證明:∵AB=AC,點DBC邊的中點,

ADBC于點D

AEBC,CEAD

∴四邊形ADCE是平行四邊形.

∴平行四邊形ADCE是矩形.

(2)解: 過點EEFACF

AB=10,

AC=10.

∵對角線AC,DE交于點O

DE=AC=10.

OE=5.

∵sin∠COE=

EF=4

OF=3.

OE=OC=5,

CF=2.

CE=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸交于點,與軸交于點,點為線段的中點,的平分線軸相較于點,、兩點關(guān)于軸對稱.

1)一動點從點出發(fā),沿適當?shù)穆窂竭\動到直線上的點,再沿適當?shù)穆窂竭\動到點處.當的運動路徑最短時,求此時點的坐標及點所走最短路徑的長.

2)點沿直線水平向右運動得點,平面內(nèi)是否存在點使得以、為頂點的四邊形為菱形,若存在,請直接寫出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)的一個數(shù)學(xué)興趣小組在本校學(xué)生中開展了主題為霧霾知多少的專題調(diào)查括動,采取隨機抽樣的方式進行問卷調(diào)查,問卷調(diào)查的結(jié)果分為A.非常了解、B.比較了解、C.基本了解D.不太了解四個等級,將所得數(shù)據(jù)進行整理后,繪制成如下兩幅不完整的統(tǒng)計圖表,請你結(jié)合圖表中的信息解答下列問題

等級

A

B

C

D

頻數(shù)

40

120

36

n

頻率

0.2

m

0.18

0.02

1)表中m   ,n   ;

2)扇形統(tǒng)計圖中,A部分所對應(yīng)的扇形的圓心角是   °,所抽取學(xué)生對丁霧霾了解程度的眾數(shù)是   ;

3)若該校共有學(xué)生1500人,請根據(jù)調(diào)查結(jié)果估計這些學(xué)生中比較了解人數(shù)約為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知⊙O的直徑AC與弦BD相交于點F,EDB延長線上的一點,∠EAB=ADB;

1)求證:AE是⊙O的切線;

2)已知點BEF的中點,求證:EAF∽△CBA

3)已知AF=4,CF=2,在(2)的條件下,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,正方形ABCD,點EDC邊上的一動點,過點CAE的垂線交AE延長線于點F,過DDHCF,垂足為H,點OAC中點,連HO

1)如圖1,當∠CAE=∠DAE時,證明:AE2CF

2)如圖2,當點EDC上運動時,線段AF與線段HO之間是否存在確定的數(shù)量關(guān)系?若存在,證明你發(fā)現(xiàn)的結(jié)論:若不存在,請說明理由;

3)當EDC中點時,AC2,直接寫出AF的長 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線ymx26mx+9m+1m0).

1)求拋物線的頂點坐標;

2)若拋物線與x軸的兩個交點分別為AB點(點A在點B的左側(cè)),且AB4,求m的值.

3)已知四個點C22)、D20)、E5,﹣2)、F5,6),若拋物線與線段CD和線段EF都沒有公共點,請直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于三個數(shù)a、b、c,用Ma,bc表示這三個數(shù)的中位數(shù),用maxa,bc表示這三個數(shù)中最大數(shù),例如:M21,01,max2,100,max2,1a解決問題:Msin45cos60,tan60_____,如果max3,53x,2x63,則x的取值范圍為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖坐標系中,O00),A33),B60),將△OAB沿直線CD折疊,使點A恰好落在線段OB上的點E處,若OE,則ACAD的值是(

A.12B.23C.67D.78

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在某飛機場東西方向的地面l上有一長為1 km的飛機跑道MN(如圖),在跑道MN的正西端14.5千米處有一觀察站A.某時刻測得一架勻速直線降落的飛機位于點A的北偏西30°,且與點A相距15千米的B處;經(jīng)過1分鐘,又測得該飛機位于點A的北偏東60°,且與點A相距5千米的C處.

(1)該飛機航行的速度是多少千米/小時?(結(jié)果保留根號)

(2)如果該飛機不改變航向繼續(xù)航行,那么飛機能否降落在跑道MN之間?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案