【題目】(1)發(fā)現(xiàn):如圖1,點A為線段BC外一動點,且BC=a,AB=b.填空:
當點A位于 時,線段AC的長取得最大值,且最大值為 (用含a,b的式子表示)
(2)應用:點A為線段BC外一動點,且BC=4,AB=1,如圖2所示,分別以AB,AC為邊,作等邊三角形ABD和等邊三角形ACE,連接CD,BE.
①請找出圖中與BE相等的線段,并說明理由;②直接寫出線段BE長的最大值.
(3)拓展:如圖3,在平面直角坐標系中,點A的坐標為(2,0),點B的坐標為(6,0),點P為線段AB外一動點,且PA=2,PM=PB,∠BPM=90°,請直接寫出線段AM長的最大值及此時點P的坐標.
【答案】(1)CB的延長線上, a+b;(2)①CD=BE,理由見解析;②BE長的最大值為5;(3)滿足條件的點P坐標(2﹣,)或(2﹣,﹣),AM的最大值為2+4.
【解析】
(1)根據(jù)點A位于CB的延長線上時,線段AC的長取得最大值,即可得到結(jié)論;(2)①根據(jù)已知條件易證△CAD≌△EAB,根據(jù)全等三角形的性質(zhì)即可得CD=BE;②由于線段BE長的最大值=線段CD的最大值,根據(jù)(1)中的結(jié)論即可得到結(jié)果;(3)連接BM,將△APM繞著點P順時針旋轉(zhuǎn)90°得到△PBN,連接AN,得到△APN是等腰直角三角形,根據(jù)全等三角形的性質(zhì)得到PN=PA=2,BN=AM,根據(jù)當N在線段BA的延長線時,線段BN取得最大值,即可得到最大值為2+4;如圖2,過P作PE⊥x軸于E,根據(jù)等腰直角三角形的性質(zhì)即可求得點P的坐標.如圖3中,根據(jù)對稱性可知當點P在第四象限時也滿足條件,由此求得符合條件的點P另一個的坐標.
(1)∵點A為線段BC外一動點,且BC=a,AB=b,
∴當點A位于CB的延長線上時,線段AC的長取得最大值,且最大值為BC+AB=a+b,
故答案為:CB的延長線上,a+b;
(2)①CD=BE,
理由:∵△ABD與△ACE是等邊三角形,
∴AD=AB,AC=AE,∠BAD=∠CAE=60°,
∴∠BAD+∠BAC=∠CAE+∠BAC,
即∠CAD=∠EAB,
在△CAD與△EAB中, ,
∴△CAD≌△EAB(SAS),
∴CD=BE;
②∵線段BE長的最大值=線段CD的最大值,
由(1)知,當線段CD的長取得最大值時,點D在CB的延長線上,
∴最大值為BD+BC=AB+BC=5;
(3)如圖1,
∵將△APM繞著點P順時針旋轉(zhuǎn)90°得到△PBN,連接AN,
則△APN是等腰直角三角形,
∴PN=PA=2,BN=AM,
∵A的坐標為(2,0),點B的坐標為(6,0),
∴OA=2,OB=6,
∴AB=4,
∴線段AM長的最大值=線段BN長的最大值,
∴當N在線段BA的延長線時,線段BN取得最大值,
最大值=AB+AN,
∵AN=AP=2,
∴最大值為2+4;
如圖2,
過P作PE⊥x軸于E,
∵△APN是等腰直角三角形,
∴PE=AE=,
∴OE=BO﹣AB﹣AE=6﹣4﹣=2﹣,
∴P(2﹣,).
如圖3中,
根據(jù)對稱性可知當點P在第四象限時,P(2﹣,﹣)時,也滿足條件.
綜上所述,滿足條件的點P坐標(2﹣,)或(2﹣,﹣),AM的最大值為2+4.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xoy中,直線與x軸交于點A,與y軸交于點B.動點P、Q分別從O、B同時出發(fā),其中點P以每秒4個單位的速度沿OB向終點B運動,點Q以每秒5個單位的速度沿BA向終點A運動.設運動時間為t秒.
(1)連結(jié)PQ,若△AOB和以B、P、Q為頂點的三角形相似,求t的值;
(2)連結(jié)AP、OQ,若AP⊥OQ,求t的值;
(3)試證明:PQ的中點在△AOB的一條中位線上.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料:
已知實數(shù)m,n滿足(2m2+n2+1)(2m2+n2-1)=80,試求2m2+n2的值.
解:設2m2+n2=t,則原方程變?yōu)?/span>(t+1)(t-1)=80,整理得t2-1=80,t2=81,
所以t=土9,因為2m2+n2>0,所以2m2+n2=9.
上面這種方法稱為“換元法”,把其中某些部分看成一個整休,并用新字母代替(即換元),則能使復雜的問題簡單化.
根據(jù)以上閱讀材料內(nèi)容,解決下列問題,并寫出解答過程.
(1)已知實數(shù)x、y,滿足(2x2+2y2+3)(2x2+2y2-3)=27,求x2+y2的值.
(2)已知Rt△ACB的三邊為a、b、c(c為斜邊),其中a、b滿足(a2+b2)(a2+b2-4)=5,求Rt△ACB外接圓的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,以點M(0,)為圓心,以長為半徑作M交x軸于A.B兩點,交y軸于C.D兩點,連接AM并延長交M于P點,連接PC交x軸于E.
(1)求點C.P的坐標;
(2)求證:BE=2OE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,BA=BC,以AB為直徑的⊙O分別交AC,BC于點D,E,BC的延長線與⊙O的切線AF交于點F.
(1)求證:∠ABC=2∠CAF;
(2)若AC=2,CE:EB=1:4,求CE,AF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCO是平行四邊形,OA=2,AB=6,點C在x軸的負半軸上,將平行四邊形 ABCO繞點A逆時針旋轉(zhuǎn)得到平行四邊形ADEF,AD經(jīng)過點O,點F恰好落在x軸的正半軸上.若點D在反比例函數(shù)y=(x<0)的圖象上,則k的值為( )
A.4B.12C.8D.6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在四邊形ABCD中,∠B+∠D=180°,對角線AC平分∠BAD
(1)如圖1,若∠DAB=120°,且∠B=90°,易證AD+BA=AC
(2)如圖2,若將(1)中的條件“∠B=90°”去掉,(1)中的結(jié)論是否成立?請說明理由.
(3)如圖3,若∠DAB=90°,探究邊AD、AB與對角線AC的數(shù)量關系并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,拋物線y=ax2+bx+3與坐標軸分別交于點A,B(﹣3,0),C(1,0),點P是線段AB上方拋物線上的一個動點.
(1)求拋物線解析式;
(2)當點P運動到什么位置時,△PAB的面積最大?
(3)過點P作x軸的垂線,交線段AB于點D,再過點P作PE∥x軸交拋物線于點E,連接DE,請問是否存在點P使△PDE為等腰直角三角形?若存在,求點P的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(4分)如圖,拋物線的對稱軸是.且過點(,0),有下列結(jié)論:①abc>0;②a﹣2b+4c=0;③25a﹣10b+4c=0;④3b+2c>0;⑤a﹣b≥m(am﹣b);其中所有正確的結(jié)論是 .(填寫正確結(jié)論的序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com