關(guān)于x的方程數(shù)學公式=數(shù)學公式的解不是負值,則a與b的關(guān)系為________.

5a≥3b
分析:此題將x化成關(guān)于a,b的一元一次方程,然后根據(jù)x的取值可求出a,b的取值.
解答:依題意原方程可化為:
5(2x+a)=3(4x+b)
∴x=(5a-3b)÷2
又∵x≥0
∴5a-3b≥0
∴5a≥3b
點評:此題考查的是一元一次方程的解法,將x用a,b來表示,根據(jù)x的取值范圍可求出ab的取值.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

已知關(guān)于x的方程(k-1)x2+(2k-3)x+k+1=0有兩個不相等的實數(shù)根x1,x2
(1)求k的取值范圍;
(2)是否存在實數(shù)k,使方程的兩實數(shù)根互為相反數(shù)?如果存在,求出k的值;如果不存在,請說明理由.
解:(1)根據(jù)題意,得
△=(2k-3)2-4(k-1)(k+1)
=4k2-12k+9-4k2+4
=-12k+13>0.
∴k<
13
12

∴當k<
13
12
時,方程有兩個不相等的實數(shù)根.
(2)存在.如果方程的兩個實數(shù)根互為相反數(shù),則x1+x2=
2k-3
k-1
=0,解得k=
3
2

檢驗知k=
3
2
2k-3
k-1
=0的解.
所以當k=
3
2
時,方程的兩實數(shù)根x1,x2互為相反數(shù).
當你讀了上面的解答過程后,請判斷是否有錯誤?如果有,請指出錯誤之處,直接寫出正確的答案.

查看答案和解析>>

科目:初中數(shù)學 來源:數(shù)學:9.3 解一元一次不等式 同步練習(人教版七年級下) 人教版 題型:013

如果關(guān)于x的方程的解不是負值,那么a與b的關(guān)系是

[  ]

A.a>b

B.b≥a

C.5a=3b

D.5a≥3b

查看答案和解析>>

科目:初中數(shù)學 來源:中學學習一本通 數(shù)學 七年級下冊 人教課標 題型:013

若關(guān)于x的方程的解不是負值,那么a與b的關(guān)系是

[  ]

A.a>b

B.b≥a

C.5a=3b

D.5a≥3b

查看答案和解析>>

科目:初中數(shù)學 來源:2012屆江蘇省高郵市九年級上學期期中考試數(shù)學試卷(帶解析) 題型:解答題

課堂上對關(guān)于x的方程:的解進行合作探究時,甲同學發(fā)現(xiàn),當m=0時,方程的兩根都為1,當m>0時,方程有兩個不相等的實數(shù)根;乙同學發(fā)現(xiàn),無論m取什么正實數(shù)時方程的兩根都不可能相等;丙同學發(fā)現(xiàn)無論m取什么正實數(shù)時方程的兩根這和均為定值。
(1)請找一個m的值代入方程使方程的兩個根為互不相等的整數(shù),并求這兩個根;
(2)請選擇乙或丙同學的發(fā)現(xiàn)加以判斷,并說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年江蘇省高郵市九年級上學期期中考試數(shù)學試卷(解析版) 題型:解答題

課堂上對關(guān)于x的方程:的解進行合作探究時,甲同學發(fā)現(xiàn),當m=0時,方程的兩根都為1,當m>0時,方程有兩個不相等的實數(shù)根;乙同學發(fā)現(xiàn),無論m取什么正實數(shù)時方程的兩根都不可能相等;丙同學發(fā)現(xiàn)無論m取什么正實數(shù)時方程的兩根這和均為定值。

(1)請找一個m的值代入方程使方程的兩個根為互不相等的整數(shù),并求這兩個根;

(2)請選擇乙或丙同學的發(fā)現(xiàn)加以判斷,并說明理由。

 

查看答案和解析>>

同步練習冊答案