已知:如圖,在△ABC中,∠ACB=90°,AC=BC,直線l經(jīng)過頂點C,過A,B兩點分別作l的垂線AE和BF,且E,F(xiàn)為垂足.
(1)求證:EF=AE+BF;
(2)取AB的中點M,連接ME,MF.試判斷△MEF的形狀,并說明理由.

(1)證明:∵AE⊥EF,BF⊥EF,∠ACB=90°
∴∠AEC=∠BFC=∠ACB=90°,
∴∠EAC+∠ECA=90°,∠ECA+∠FCB=90°,
∴∠EAC=∠FCB,
在△EAC和△FCB中

∴△EAC≌△FCB(AAS),
∴CE=BF,AE=CF,
∴EF=CE+CF=AE+BF,
即EF=AE+BF.

(2)△MEF為等腰直角三角形,
解:△MEF為等腰直角三角形
理由是:連接CM,
∵△ABC是等腰直角三角形,AM=BM,
∴CM⊥AB,∠ACM=∠MCB=45°
∴CM=AM=BM=AB
∵∠EAM=∠EAC+∠CAM=∠EAC+45°
∵∠MCF=∠BCF+∠MCB=∠BCF+45°
∵∠EAC=∠BCF,
∴∠MAE=∠MCF,
在△MAE和△MCF中

∴△MAE≌△MCF(SAS)
∴EM=MF,∠CMF=∠AME,
∵∠AMC=90°,
∵∠AMC=∠CME+∠AME=∠CME+CMF=∠EMF,
∴∠AME=∠EMF=90°,
∴△MEF是等腰直角三角形.
分析:(1)求出∠AEC=∠BFC=90°,∠EAC=∠FCB,根據(jù)AAS證△EAC≌△FCB,推出CE=BF,AE=CF即可;
(1)連接CM求出∠MAE=∠MCF,CM=AM,根據(jù)SAS證△MAE≌△MCF,推出ME=MF,∠EMA=∠CMF,求出∠EMF=90°即可.
點評:本題考查了全等三角形的性質和判定,等腰直角三角形的性質,主要考查學生的推理能力,有一定的難度.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

34、已知:如圖,在AB、AC上各取一點,E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•啟東市一模)已知,如圖,在Rt△ABC中,∠C=90°,∠BAC的角平分線AD交BC邊于D.
(1)以AB邊上一點O為圓心,過A,D兩點作⊙O(不寫作法,保留作圖痕跡),再判斷直線BC與⊙O的位置關系,并說明理由;
(2)若(1)中的⊙O與AB邊的另一個交點為E,半徑為2,AB=6,求線段AD、AE與劣弧DE所圍成的圖形面積.(結果保留根號和π)《根據(jù)2011江蘇揚州市中考試題改編》

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,在△ABC中,∠C=120°,邊AC的垂直平分線DE與AC、AB分別交于點D和點E.
(1)作出邊AC的垂直平分線DE;
(2)當AE=BC時,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知:如圖,在AB、AC上各取一點E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學 來源:專項題 題型:證明題

已知:如圖,在AB、AC上各取一點,E、D,使AE=AD,連結BD,CE,BD與CE交于O,連結AO,
           ∠1=∠2;
求證:∠B=∠C

查看答案和解析>>

同步練習冊答案