精英家教網(wǎng)如圖,已知點(diǎn)E是矩形ABCD的邊AB上一點(diǎn),且EF⊥AC,EG⊥BD,AB=4cm,AD=3cm,則EF+EG=
 
分析:連接DE、CE,已知AB、AD,根據(jù)勾股定理即可求得BD的長(zhǎng),根據(jù)△BDE的面積、△AEC的面積之和即可求得EF+EG的值,即可解題.
解答:精英家教網(wǎng)解:連接DE、CE,且BD=AC
已知AB=4cm,AD=3cm,
∴BD=
AB2+AD2
=5cm,
則△BDE的面積=
1
2
BE•AD=
1
2
BD•EG,
△AEC的面積=
1
2
AE•BC=
1
2
AC•EF,
∴△BDE的面積與△AEC的面積之和=
1
2
AB•AD=
1
2
BD•(EF+EG)=
1
2
×3cm×4cm=6平方厘米,
∴EF+EG=
12
5

故答案為
12
5
點(diǎn)評(píng):本題考查了勾股定理在直角三角形中的運(yùn)用,考查了三角形面積的計(jì)算,本題中根據(jù)△BDE的面積、△AEC的面積之和求EF+EG的值是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知點(diǎn)E是矩形ABCD的邊CB延長(zhǎng)線上一點(diǎn),且CE=CA,連接AE,過點(diǎn)C作CF⊥AE,垂足為點(diǎn)F,連接精英家教網(wǎng)BF、FD.
(1)求證:△FBC≌△FAD;
(2)連接BD,若
FB
BD
=
3
5
,且AC=10,求FC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知點(diǎn)E是矩形ABCD的邊AB上一點(diǎn),BE:EA=5:3,EC=15
5
,把△BEC沿折痕EC向精英家教網(wǎng)上翻折,若點(diǎn)B恰好在AD上,設(shè)這個(gè)點(diǎn)為F.
(1)求AB、BC的長(zhǎng)度各是多少?
(2)若⊙O內(nèi)切于以F、E、B、C為頂點(diǎn)的四邊形,求⊙O的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知點(diǎn)E是矩形ABCD的邊CB延長(zhǎng)線上一點(diǎn),且CE=CA,連接AE,過點(diǎn)C作CF⊥AE,垂足為點(diǎn)F,連接BF、FD.
(1)求證:△FBC≌△FAD;
(2)連接BD,若cos∠FBD=
35
,且BD=10,求FC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知點(diǎn)E是矩形ABCD的邊CB延長(zhǎng)線上一點(diǎn),且CE=CA,連接AE,過點(diǎn)C作CF⊥AE,垂足為點(diǎn)F,連接BF、FD.
(1)求證:△FBC≌△FAD;
(2)連接BD,若cos∠FBD=數(shù)學(xué)公式,且BD=10,求FC的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案