【題目】如圖,已知一次函數(shù)ykx+b的圖象與x軸,y軸分別交于點(diǎn)(2,0),點(diǎn)(0,3).有下列結(jié)論:圖象經(jīng)過點(diǎn)(1,﹣3);關(guān)于x的方程kx+b0的解為x2;關(guān)于x的方程kx+b3的解為x0;當(dāng)x2時(shí),y0.其中正確的是( 。

A.①②③B.①③④C.②③④D.①②④

【答案】C

【解析】

根據(jù)一次函數(shù)的性質(zhì),一次函數(shù)與一元一次方程的關(guān)系對(duì)各小題分析判斷即可得解.

把點(diǎn)(2,0),點(diǎn)(0,3)代入ykx+b得,,

解得:,

∴一次函數(shù)的解析式為y=﹣x+3,

當(dāng)x1時(shí),y,

∴圖象不經(jīng)過點(diǎn)(1,﹣3);故不符合題意;

由圖象得:關(guān)于x的方程kx+b0的解為x2,故符合題意;

關(guān)于x的方程kx+b3的解為x0,故符合題意;

當(dāng)x2時(shí),y0,故符合題意;

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在等邊ABC中,點(diǎn)D.E分別在邊BC,AB上,且BD=AEADCE交于點(diǎn)F

1)求證:AD=CE

2)求∠DFC的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在銳角中,,,邊上的一個(gè)動(dòng)點(diǎn),正方形是一個(gè)邊長(zhǎng)為的動(dòng)正方形,其中點(diǎn)在上,,(分居的兩側(cè)),正方形的重疊的面積為

當(dāng)落在上時(shí),求的值;

當(dāng)不在上時(shí),求的關(guān)系式;

的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=x2+x+2x軸相交于點(diǎn)A、B,交y軸于點(diǎn)C,拋物線的對(duì)稱軸交x軸于點(diǎn)N,交線段AC于點(diǎn)M.點(diǎn)F是線段MA上的動(dòng)點(diǎn),連接NF,過點(diǎn)NNGNFABC的邊于點(diǎn)G

(1)求證:ABC是直角三角形;

(2)當(dāng)點(diǎn)G在邊BC上時(shí),連接GFNGF的度數(shù)變化嗎?若變化,請(qǐng)說明理由;若不變,請(qǐng)求出∠NGF的正切值;

(3)設(shè)點(diǎn)F的橫坐標(biāo)為n,點(diǎn)G的縱坐標(biāo)為m,在整個(gè)運(yùn)動(dòng)過程中,直接寫出mn的函數(shù)關(guān)系式,并注明自變量n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)、在反比例函數(shù)上,作等腰直角三角形,點(diǎn)為斜邊的中點(diǎn),連并延長(zhǎng)交軸于點(diǎn)

求反比例函數(shù)的解析式;

的面積是多少?

若點(diǎn)在直線上,請(qǐng)求出直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一列快車從甲地勻速駛往乙地,一列慢車從乙地勻速駛往甲地.設(shè)先發(fā)車輛行駛的時(shí)間為xh,兩車之間的距離為ykm,圖中的折線表示yx之間的函數(shù)關(guān)系,根據(jù)圖象解決以下問題:

(1)慢車的速度為_____km/h,快車的速度為_____km/h;

(2)解釋圖中點(diǎn)C的實(shí)際意義并求出點(diǎn)C的坐標(biāo);

(3)求當(dāng)x為多少時(shí),兩車之間的距離為500km.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】結(jié)果如此巧合!

下面是小穎對(duì)一道題目的解答.

題目:如圖,RtABC的內(nèi)切圓與斜邊AB相切于點(diǎn)D,AD=3,BD=4,求△ABC的面積.

解:設(shè)△ABC的內(nèi)切圓分別與AC、BC相切于點(diǎn)E、F,CE的長(zhǎng)為x.

根據(jù)切線長(zhǎng)定理,得AE=AD=3,BF=BD=4,CF=CE=x.

根據(jù)勾股定理,得(x+3)2+(x+4)2=(3+4)2

整理,得x2+7x=12.

所以SABC=ACBC

=(x+3)(x+4)

=(x2+7x+12)

=×(12+12)

=12.

小穎發(fā)現(xiàn)12恰好就是3×4,即△ABC的面積等于ADBD的積.這僅僅是巧合嗎?

請(qǐng)你幫她完成下面的探索.

已知:△ABC的內(nèi)切圓與AB相切于點(diǎn)D,AD=m,BD=n.

可以一般化嗎?

(1)若∠C=90°,求證:△ABC的面積等于mn.

倒過來思考呢?

(2)若ACBC=2mn,求證∠C=90°.

改變一下條件……

(3)若∠C=60°,用m、n表示△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,ACBC8cm,點(diǎn)P從點(diǎn)A出發(fā),沿AB方向以每秒cm的速度向點(diǎn)B運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)QB點(diǎn)出發(fā),以每秒1cm的速度向C點(diǎn)運(yùn)動(dòng),設(shè)PQ兩點(diǎn)的運(yùn)動(dòng)時(shí)間為t0t8)秒.

1BQ  ,BP  (用含t的式子表示).

2)當(dāng)t2時(shí),求PCQ的面積(提示:在一個(gè)三角形中,若兩個(gè)角相等,則角所對(duì)的邊也相等).

3)當(dāng)PQPC時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線y=ax2+bx+3x軸交于A(﹣3,0)、B(1,0)兩點(diǎn),與y軸交于點(diǎn)C,連接AC..

(1)請(qǐng)求出拋物線y=ax2+bx+3的解析式;

(2)如圖2,點(diǎn)P、點(diǎn)Q同時(shí)從點(diǎn)A出發(fā),點(diǎn)P沿AC以每秒個(gè)單位長(zhǎng)度的速度,由點(diǎn)A向點(diǎn)C運(yùn)動(dòng);點(diǎn)Q沿AB以每秒2個(gè)單位長(zhǎng)度的速度,由點(diǎn)A向點(diǎn)B運(yùn)動(dòng);當(dāng)一個(gè)點(diǎn)停止運(yùn)動(dòng)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,連接PQ.

①求證:PQAC;

②過點(diǎn)QQEx軸,交拋物線于點(diǎn)E,連接PE,當(dāng)PQ=PE時(shí),請(qǐng)求出t的值;

③在y軸上是否存在點(diǎn)D,使以點(diǎn)A、P、Q、D為頂點(diǎn)的四邊形是平行四邊形?若存在,直接寫出D點(diǎn)坐標(biāo):若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案