如圖,在△ABC中,∠C=90°,AC=8,BC=6。P是AB邊上的一個動點(異于A、B兩點),過點P分別作AC、BC邊的垂線,垂足為M、N設(shè)AP=x。
(1)在△ABC中,AB= ;
(2)當(dāng)x= 時,矩形PMCN的周長是14;
(3)是否存在x的值,使得△PAM的面積、△PBN的面積與矩形PMCN的面積同時相等?請說出你的判斷,并加以說明。
(1)10;(2)5;(3)不存在
【解析】
試題分析:(1)仔細分析題意利用勾股定理求解即可;
(2)利用MP∥BC和NP∥AC,可得到,,將AP=x,AB=10,BC=6,AC=8,BP=10-x
代入式中就能得到PM和PN關(guān)于x的表達式.再由矩形周長=2(PM+PN),求出x的值.
(3)當(dāng)P為AB的中點時,△PAM的面積與△PBN的面積才相等,再求出矩形PMCN的面積,進行判斷.
(1)∵△ABC為直角三角形,且AC=8,BC=6,
(2))∵PM⊥AC PN⊥BC
∴MP∥BC,AC∥PN(垂直于同一條直線的兩條直線平行),
∴,
∵AP=x,AB=10,BC=6,AC=8,BP=10-x,
∴矩形PMCN周長=2(PM+PN)=2(x+8-x)=14,解得x=5;
(3)∵PM⊥AC,PN⊥BC,
∴∠AMP=∠PNB=∠C=90º.
∴AC∥PN,∠A=∠NPB.
∴△AMP∽△PNB∽△ABC.
當(dāng)P為AB中點時,可得△AMP≌△PNB
此時S△AMP=S△PNB=×4×3=6
而S矩形PMCN=PM·MC=3×4=12.
所以不存在x的值,能使△AMP的面積、△PNB的面積與矩形PMCN面積同時相等.
考點:相似三角形的判定和性質(zhì),矩形的面積公式
點評:此類問題綜合性強,難度較大,在中考中比較常見,一般作為壓軸題,題目比較典型.
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
A、
| ||||
B、(
| ||||
C、
| ||||
D、
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com