【題目】(1)如圖①,AB為⊙O的直徑,點P在⊙O上,過點P作PQ⊥AB,垂足為點Q.說明△APQ∽△ABP;
(2)如圖②,⊙O的半徑為7,點P在⊙O上,點Q在⊙O內(nèi),且PQ=4,過點Q作PQ的垂線交⊙O于點A、B.設(shè)PA=x,PB=y,求y與x的函數(shù)表達式.
【答案】(1)見解析;(2)
【解析】
(1)根據(jù)圓周角定理可證∠APB=90°,再根據(jù)相似三角形的判定方法:兩角對應(yīng)相等,兩個三角形相似即可求證結(jié)論;
(2)連接PO,并延長PO交⊙O于點C,連接AC,根據(jù)圓周角定理可得∠PAC=90°,∠C=∠B,求得∠PAC=∠PQB,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.
(1)如圖①所示:
∵AB為⊙O的直徑
∴∠APB=90°
又∵PQ⊥AB
∴∠AQP=90°
∴∠AQP=∠APB
又∵∠PAQ=∠BAP
∴△APQ∽△ABP.
(2)如圖②,連接PO,并延長PO交⊙O于點C,連接AC.
∵PC為⊙O的直徑
∴∠PAC=90°
又∵PQ⊥AB
∴∠PQB=90°
∴∠PAC=∠PQB
又∵∠C=∠B(同弧所對的圓周角相等)
∴△PAC∽△PQB
∴
又∵⊙O的半徑為7,即PC=14,且PQ=4,PA=x,PB=y
∴
∴.
科目:初中數(shù)學 來源: 題型:
【題目】某商場試銷一種成本為每件元的服裝,規(guī)定試銷期間銷售單價不低于成本單價,且獲利不得高于,經(jīng)試銷發(fā)現(xiàn),銷售量(件)與銷售單價(元)符合一次函數(shù),且時,;時,.
求一次函數(shù)的表達式;
若該商場獲得利潤為元,試寫出利潤與銷售單價之間的關(guān)系式;銷售單價定為多少元時,商場可獲得最大利潤,最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】口袋中有只乒乓球,其中只是紅球,另只是黃球,它們的大小都一樣,現(xiàn)從中任意摸出只球,
(1)恰為一紅一黃的概率是多少?
(2)兩只均為紅球的概率是多少?
(3)兩只均為黃球的概率是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】密蘇里州圣路易斯拱門是座雄偉壯觀的拋物線形的建筑物,是美國最高的獨自挺立的紀念碑,如圖.拱門的地面寬度為200米,兩側(cè)距地面高150米處各有一個觀光窗,兩窗的水平距離為100米,求拱門的最大高度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AC:BC:AB=3:4:5,⊙O沿著△ABC的內(nèi)部邊緣滾動一圈,若⊙O的半徑為1,且圓心O運動的路徑長為18,則△ABC的周長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,D為⊙O上一點,點C在直徑BA的延長線上,且∠CDA=∠CBD.
(1)求證:CD2=CACB;
(2)求證:CD是⊙O的切線;
(3)過點B作⊙O的切線交CD的延長線于點E,若BC=12,tan∠CDA=,求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,一次函數(shù)y=﹣x+b的圖象與反比例函數(shù)y=(k≠0)的圖象交于A、B點,與y軸交于點C,其中點A的半標為(﹣2,3)
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)如圖,若將點C沿y軸向上平移4個單位長度至點F,連接AF、BF,求△ABF的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,等邊△ABC中D點為AB邊上一動點,E為直線AC上一點,將△ADE沿著DE折疊,點A落在直線BC上,對應(yīng)點為F,若AB=4,BF:FC=1:3,則線段AE的長度為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:若拋物線的頂點與軸的兩個交點構(gòu)成的三角形是直角三角形,則這種拋物線就稱為“美麗拋物線”.如圖,直線:經(jīng)過點一組拋物線的頂點,,,…(為正整數(shù)),依次是直線上的點,這組拋物線與軸正半軸的交點依次是:,,,…(為正整數(shù)).若,當為( )時,這組拋物線中存在美麗拋物線.
A.或B.或C.或D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com