(1)如圖從O點引三條射線OA、OB、OC則圖中有多少個角?

(2)若以從O點引四條射線OA、OB、OC、OD,則圖中有多少個角?

(3)若從O點引n條射線,,…,,則圖中有多少個角?你能用一個式子表示出來嗎?

答案:
解析:

如圖為邊的角有(n1)個,同樣以,,…,為邊的角也有(n1)個,則一共有n(n1)個,但同時,以為邊得和以為邊是重合的,因此,整個角的數(shù)量重復(fù)一次,故角的總數(shù)應(yīng)為個因此(1)應(yīng)有個;

(2)


提示:

(1)(2)為基礎(chǔ)先猜測結(jié)論,注意驗證,可以現(xiàn)以每條射線為邊的角有(n1),而有幾條邊,當然中間有重復(fù)的角.


練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:閱讀理解

等腰三角形是我們熟悉的圖形之一,下面介紹一種等分等邊三角形面積的方法:如圖(1),在△ABC中,AB=AC,把底邊BC分成m等份,連接頂點A和底邊BC各等分點的線段,即可把這個三角形的面積m等分.
問題的提出:任意給定一個正n邊形,你能把它的面積m等分嗎?
探究與發(fā)現(xiàn):為了解決這個問題,我們先從簡單問題入手:怎樣從正三角形的中一心(正多邊形的各對稱軸的交點,又稱為正多邊形的中心)引線段,才能將這個正三角形的面積m等分?
如果要把正三角形的面積四等分,我們可以先連接正三角形的中心和各頂點(如圖(2),這些線段將這個正三角形分成了三個全等的等腰三角形);再把所得的每個等腰三角形的底邊四等分,連接中心和各邊等分點(如圖(3),這些線段把這個正三角形分成了12個面積相等的小三角形);最后,依次把相鄰的三個小三角形拼合在一起(如圖(4)).這樣就把正三角形的面積四等分.

(1)實驗與驗證:依照上述方法,利用刻度尺,在圖(5)中畫出一種將正三角形的面積五等分的簡單示意圖;
(2)猜想與證明:怎樣從正三角形的中心引線段,才能將這個正三角形的面積m等分?敘述你的分法并說明理由;
(3)拓展與延伸:怎樣從正方形的中心引線段,才能將這個正方形的面積m等分?(敘述方法即可,不需說明理由)
(4)向題解決:怎樣從正n邊形的中心引線段,才能將這個正n邊形的面積m等分?(敘述分法即可,不需說明理由).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,直線AB、CD相交于點O,從點O引三條射線OE、OF、OG,那么,圖中小于平角的角一共有
19
19
個.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:044

(1)如圖從O點引三條射線OA、OB、OC則圖中有多少個角?

(2)若以從O點引四條射線OA、OB、OC、OD,則圖中有多少個角?

(3)若從O點引n條射線OA1,OA2,…,OAn,則圖中有多少個角?你能用一個式子表示出來嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

等腰三角形是我們熟悉的圖形之一,下面介紹一種等分等邊三角形面積的方法:如圖(1),在△ABC中,AB=AC,把底邊BC分成m等份,連接頂點A和底邊BC各等分點的線段,即可把這個三角形的面積m等分.
問題的提出:任意給定一個正n邊形,你能把它的面積m等分嗎?
探究與發(fā)現(xiàn):為了解決這個問題,我們先從簡單問題入手:怎樣從正三角形的中一心(正多邊形的各對稱軸的交點,又稱為正多邊形的中心)引線段,才能將這個正三角形的面積m等分?
如果要把正三角形的面積四等分,我們可以先連接正三角形的中心和各頂點(如圖(2),這些線段將這個正三角形分成了三個全等的等腰三角形);再把所得的每個等腰三角形的底邊四等分,連接中心和各邊等分點(如圖(3),這些線段把這個正三角形分成了12個面積相等的小三角形);最后,依次把相鄰的三個小三角形拼合在一起(如圖(4)).這樣就把正三角形的面積四等分.

(1)實驗與驗證:依照上述方法,利用刻度尺,在圖(5)中畫出一種將正三角形的面積五等分的簡單示意圖;
(2)猜想與證明:怎樣從正三角形的中心引線段,才能將這個正三角形的面積m等分?敘述你的分法并說明理由;
(3)拓展與延伸:怎樣從正方形的中心引線段,才能將這個正方形的面積m等分?(敘述方法即可,不需說明理由)
(4)向題解決:怎樣從正n邊形的中心引線段,才能將這個正n邊形的面積m等分?(敘述分法即可,不需說明理由).

查看答案和解析>>

同步練習冊答案