(2006•寧波)如圖,斜邊長(zhǎng)為6cm,∠A=30°的直角三角板ABC繞點(diǎn)C順時(shí)針?lè)较蛐D(zhuǎn)90°至△A′B′C的位置,再沿CB向左平移使點(diǎn)B′落在原三角板ABC的斜邊AB上.則三角板向左平移的距離為    cm.
【答案】分析:根據(jù)平移的概念知各點(diǎn)移動(dòng)的距離相等,并根據(jù)直角三角板的特點(diǎn)解答.
解答:解:設(shè)三角板向左平移后,與AB交于點(diǎn)D;故三角板向左平移的距離為B'D的長(zhǎng).
∵AB=6cm,∠A=30°
∴BC=B'C=3cm,AC=3cm
∵B'D∥BC,


∴B'D=(3-)cm;
故三角板向左平移的距離為(3-)cm.
點(diǎn)評(píng):本題考查平移、旋轉(zhuǎn)的性質(zhì);平移的基本性質(zhì)是:
①平移不改變圖形的形狀和大;
②經(jīng)過(guò)平移,對(duì)應(yīng)點(diǎn)所連的線段平行且相等,對(duì)應(yīng)線段平行且相等,對(duì)應(yīng)角相等.旋轉(zhuǎn)變化前后,對(duì)應(yīng)線段、對(duì)應(yīng)角分別相等,圖形的大小、形狀都不改變,兩組對(duì)應(yīng)點(diǎn)連線的交點(diǎn)是旋轉(zhuǎn)中心.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2006年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2006•寧波)如圖,拋物線y=ax2+bx+c與x軸交于點(diǎn)B(1,0),C(-3,0),且過(guò)點(diǎn)A(3,6).
(1)求a、b、c的值;
(2)設(shè)此拋物線的頂點(diǎn)為P,對(duì)稱軸與線段AC相交于點(diǎn)Q,連接CP、PB、BQ,試求四邊形PBQC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年浙江省寧波市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2006•寧波)如圖,拋物線y=ax2+bx+c與x軸交于點(diǎn)B(1,0),C(-3,0),且過(guò)點(diǎn)A(3,6).
(1)求a、b、c的值;
(2)設(shè)此拋物線的頂點(diǎn)為P,對(duì)稱軸與線段AC相交于點(diǎn)Q,連接CP、PB、BQ,試求四邊形PBQC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年廣東省深圳市松崗中學(xué)中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2006•寧波)如圖,在⊙O中,弦AB與CD相交于點(diǎn)M,AD=BC,連接AC.
(1)求證:△MAC是等腰三角形;
(2)若AC為⊙O直徑,求證:AC2=2AM•AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年浙江省寧波市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•寧波)如圖,在離旗桿6m的A處,用測(cè)角儀測(cè)得旗桿頂端c的仰角為50度.已知測(cè)角儀高AD=1.5m,求旗桿BC的高.(結(jié)果是近似數(shù),請(qǐng)你自己選擇合適的精確度)
如果你沒(méi)有帶計(jì)算器,也可選用如下數(shù)據(jù):sin50°≈0.7660,cos50°≈O.6428,tan50°≈1.192,cot50°≈O.8391.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年浙江省寧波市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:選擇題

(2006•寧波)如圖,△ABC與△DEF是位似圖形,位似比為2:3,已知AB=4,則DE的長(zhǎng)等于( )

A.6
B.5
C.9
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案