【題目】如圖1,在四邊形ABCD中,點(diǎn)E、F分別是AB、CD的中點(diǎn),過(guò)點(diǎn)E作AB的垂線,過(guò)點(diǎn)F作CD的垂線,兩垂線交于點(diǎn)G,連接AG、BG、CG、DG,且∠AGD=∠BGC.
(1)求證:AD=BC;
(2)求證:△AGD∽△EGF;
(3)如圖2,若AD、BC所在直線互相垂直,求AD:EF的值.
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3).
【解析】試題分析:(1)由線段垂直平分線的性質(zhì)得出GA=GB,GD=GC,由SAS證明△AGD≌△BGC,得出對(duì)應(yīng)邊相等即可;
(2)先證出∠AGB=∠DGC,由,證出△AGB∽△DGC,得出比例式,再證出∠AGD=∠EGF,即可得出△AGD∽△EGF;
(3)延長(zhǎng)AD交GB于點(diǎn)M,交BC的延長(zhǎng)線于點(diǎn)H,則AH⊥BH,由△AGD≌△BGC,得出∠GAD=∠GBC,再求出∠AGB=∠AHB=90°,得出∠AGE=∠AGB=45°,求出,由△AGD∽△EGF,即可得出的值.
試題解析:(1)證明:∵GE是AB的垂直平分線,
∴GA=GB,
同理:GD=GC,
在△AGD和△BGC中,
,
∴△AGD≌△BGC(SAS),
∴AD=BC;
(2)證明:∵∠AGD=∠BGC,
∴∠AGB=∠DGC,
在△AGB和△DGC中, ,
∴△AGB∽△DGC,
∴,
又∵∠AGE=∠DGF,
∴∠AGD=∠EGF,
∴△AGD∽△EGF;
(3)延長(zhǎng)AD交GB于點(diǎn)M,交BC的延長(zhǎng)線于點(diǎn)H,如圖所示:
則AH⊥BH,
∵△AGD≌△BGC,
∴∠GAD=∠GBC,
在△GAM和△HBM中,∠GAD=∠GBC,∠GMA=∠HMB,
∴∠AGB=∠AHB=90°,
∴∠AGE=∠AGB=45°,
∴,
又∵△AGD∽△EGF,
∴=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某個(gè)體水果店經(jīng)營(yíng)香蕉,每千克進(jìn)價(jià)元,售價(jià)元,10月1日至10月5日經(jīng)營(yíng)情況如下表:
若9月30日晚庫(kù)存為0,則10月1日晚庫(kù)存______ kg;
就10月3日這一天的經(jīng)營(yíng)情況看,當(dāng)天是賺錢(qián)還是賠錢(qián),規(guī)定賺錢(qián)為正,則當(dāng)天賺______ 元;
月1日到10月5日該個(gè)體戶共賺多少錢(qián)?
日期 | 10月1日 | 10月2日 | 10月3日 | 10月4日 | 10月5日 |
購(gòu)進(jìn)kg | 55 | 45 | 50 | 50 | 50 |
售出 | 44 | 38 | 51 | ||
損耗 | 6 | 2 | 12 | 5 | 0 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一個(gè)數(shù)的絕對(duì)值等于2,那么這個(gè)數(shù)與2的和為( )
A.4B.0C.4或—4D.0或4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某果農(nóng)種了50棵蘋(píng)果樹(shù),收獲時(shí),他把蘋(píng)果樹(shù)的產(chǎn)量做了一下統(tǒng)計(jì),得到下表:
質(zhì)量(千克) | 33 | 34 | 35 | 36 | 38 |
數(shù)量(棵) | 10 | 5 | 20 | 10 | 5 |
(1)蘋(píng)果產(chǎn)量的眾數(shù)是;中位數(shù)是;平均數(shù)是;
(2)市場(chǎng)上蘋(píng)果的銷(xiāo)售價(jià)為8元/千克,化肥、農(nóng)藥、人工費(fèi)等共投入資金1000元,則今年該果農(nóng)純收入多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),ABCD的頂點(diǎn)A的坐標(biāo)為(﹣2,0),點(diǎn)D的坐標(biāo)為(0,2),點(diǎn)B在x軸的正半軸上,點(diǎn)E為線段AD的中點(diǎn).
(Ⅰ)如圖1,求∠DAO的大小及線段DE的長(zhǎng);
(Ⅱ)過(guò)點(diǎn)E的直線l與x軸交于點(diǎn)F,與射線DC交于點(diǎn)G.連接OE,△OEF′是△OEF關(guān)于直線OE對(duì)稱(chēng)的圖形,記直線EF′與射線DC的交點(diǎn)為H,△EHC的面積為3 .
①如圖2,當(dāng)點(diǎn)G在點(diǎn)H的左側(cè)時(shí),求GH,DG的長(zhǎng);
②當(dāng)點(diǎn)G在點(diǎn)H的右側(cè)時(shí),求點(diǎn)F的坐標(biāo)(直接寫(xiě)出結(jié)果即可).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com