如圖,在△ABC中,AB=AC=5,P為BC上任意一點,求證:AP2+PB•PC=25.

證明:作AH⊥BC于H,則BH=CH,
在Rt△AHP中,AP2=AH2+HP2
在△ABH中,AB2=AH2+BH2
∵AB=AC,AH⊥BC,
∴BH=CH,
∴AB2-AP2=BH2-HP2=(BH+HP)(BH-HP)=PB•CP,
∴AP2+PB•PC=AB2=25.
分析:作AH⊥BC于H,則BH=CH,在直角△AHP中,根據(jù)勾股定理就可以解決.
點評:本題主要考查了勾股定理的應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習冊答案