【題目】如圖1,平面直角坐標(biāo)系中,B、C兩點(diǎn)的坐標(biāo)分別為B03)和C0,﹣),點(diǎn)Ax軸正半軸上,且滿足∠BAO30°

1)過點(diǎn)CCEAB于點(diǎn)E,交AO于點(diǎn)F,點(diǎn)G為線段OC上一動(dòng)點(diǎn),連接GF,將OFG沿FG翻折使點(diǎn)O落在平面內(nèi)的點(diǎn)O處,連接OC,求線段OF的長以及線段OC的最小值;

2)如圖2,點(diǎn)D的坐標(biāo)為D(﹣1,0),將BDC繞點(diǎn)B順時(shí)針旋轉(zhuǎn),使得BCAB于點(diǎn)B,將旋轉(zhuǎn)后的BDC沿直線AB平移,平移中的BDC記為BDC,設(shè)直線BCx軸交于點(diǎn)MN為平面內(nèi)任意一點(diǎn),當(dāng)以BD、M、N為頂點(diǎn)的四邊形是菱形時(shí),求點(diǎn)M的坐標(biāo).

【答案】1 ;(2

【解析】

1)解直角三角形求出OFCF,根據(jù)CO′≥CFOF求解即可.

2)分四種情形:①如圖2中,當(dāng)BDBMBD=時(shí),可得菱形MNDB.②如圖3中,當(dāng)BM是菱形的對(duì)角線時(shí).③如圖4中,當(dāng)BD是菱形的對(duì)角線時(shí).④如圖5中,當(dāng)MD是菱形的對(duì)角線時(shí),分別求解即可解決問題.

1)如圖1中,

∵∠AOB=90°,∠OAB=30°,
∴∠CBE=60°
CEAB,
∴∠CEB=90°,∠BCE=30°,
C0,-),
OC=,OF=OCtan30°=,CF=2OF=3
由翻折可知:FO′=FO=,
CO′≥CF-O′F
CO′≥,
∴線段O′C的最小值為
2)①如圖2中,當(dāng)B′D′=B′M=BD=時(shí),可得菱形MND′B′

RtAMB′中,AM=2B′M=2,
OM=AM-OA=2-3,
M3-2,0).
②如圖3中,當(dāng)B′M是菱形的對(duì)角線時(shí),由題意B′M=2OB=6,此時(shí)AM=12,OM=123,可得M3-12,0).

③如圖4中,當(dāng)B′D′是菱形的對(duì)角線時(shí),由∠D′B′M=∠DBO

可得,所以B′M=

則在RTAM B′中,AM=2B′M=,所以OM=OA-AM=3-,所以M3-,0).

④如圖5中,當(dāng)MD′是菱形的對(duì)角線時(shí),MB′=B′D′=,可得AM=2OM=OA+AM=3+2,所以M3+2,0).

綜上所述,滿足條件的點(diǎn)M的坐標(biāo)為(3+2,0)或(3-12,0)或(3-0)或(3+2,0).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC和△DEF是兩個(gè)等腰直角三角形,∠A=∠D90°,△DEF的頂點(diǎn)E位于邊BC的中點(diǎn)上.

1)如圖1,設(shè)DEAB交于點(diǎn)MEFAC交于點(diǎn)N,求證:△BEM∽△CNE;

2)如圖2,將△DEF繞點(diǎn)E旋轉(zhuǎn),使得DEBA的延長線交于點(diǎn)M,EFAC交于點(diǎn)N,于是,除(1)中的一對(duì)相似三角形外,能否再找出一對(duì)相似三角形并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)CD在⊙O上,點(diǎn)E在⊙O外,∠EAC=∠D60°.

(1)求證:AE是⊙O的切線;

(2) 連接OC,當(dāng)BC3時(shí),求劣弧AC的長和扇形B0C的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一元二次方程中,有著名的韋達(dá)定理:對(duì)于一元二次方程ax2+bx+c0a≠0),如果方程有兩個(gè)實(shí)數(shù)根x1,x2,那么x1+x2=﹣x1x2(說明:定理成立的條件≥0).比如方程2x23x10中,17,所以該方程有兩個(gè)不等的實(shí)數(shù)解.記方程的兩根為x1,x2,那么x1+x2,x1x2=﹣,請(qǐng)根據(jù)閱讀材料解答下列各題:

1)已知方程x23x20的兩根為x1x2,且x1x2,求下列各式的值:

x12+x22;②

2)已知x1,x2是一元二次方程4kx24kx+k+10的兩個(gè)實(shí)數(shù)根.

①是否存在實(shí)數(shù)k,使(2x1x2)(x12x2)=﹣成立?若存在,求出k的值;若不存在,請(qǐng)說明理由.

②求使的值為整數(shù)的實(shí)數(shù)k的整數(shù)值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場在促銷活動(dòng)中規(guī)定,顧客每消費(fèi)100元就能獲得一次抽獎(jiǎng)機(jī)會(huì).為了活躍氣氛,設(shè)計(jì)了兩個(gè)抽獎(jiǎng)方案:

方案一:轉(zhuǎn)動(dòng)轉(zhuǎn)盤A一次,轉(zhuǎn)出紅色可領(lǐng)取一份獎(jiǎng)品;

方案二:轉(zhuǎn)動(dòng)轉(zhuǎn)盤B兩次,兩次都轉(zhuǎn)出紅色可領(lǐng)取一份獎(jiǎng)品.(兩個(gè)轉(zhuǎn)盤都被平均分成3份)如果你獲得一次抽獎(jiǎng)機(jī)會(huì),你會(huì)選擇哪個(gè)方案?請(qǐng)用相關(guān)的數(shù)學(xué)知識(shí)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一段拋物線:,記為,它與軸交于兩點(diǎn):將旋轉(zhuǎn)得到,交軸于:將旋轉(zhuǎn)得到,交軸于.過拋物線,頂點(diǎn)的直線與,圍成的如圖中的陰影部分,那么該面積為_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知的半徑為,的兩條弦,,,則弦之間的距離是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形中,AB=8,BC=6,過對(duì)角線中點(diǎn)的直線分別交,邊于點(diǎn),.

(1)求證:四邊形是平行四邊形;

(2)當(dāng)四邊形是菱形時(shí),求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在半徑為5的扇形AOB中,AOB=90°,點(diǎn)C是弧AB上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A、B重合)ODBC,OEAC,垂足分別為D、E

1)當(dāng)BC=6時(shí),求線段OD的長;

2)在DOE中是否存在長度保持不變的邊?如果存在,請(qǐng)指出并求其長度;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案