如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于點A(-1,0)、B(3,0),與y軸交于點C(0,3).
(1)求拋物線的解析式及頂點D的坐標(biāo);
(2)若P為線段BD上的一個動點,點P的橫坐標(biāo)為m,試用含m的代數(shù)式表示點P的縱坐標(biāo);
(3)過點P作PM⊥x軸于點M,求四邊形PMAC的面積的最大值和此時點P的坐標(biāo);
(4)若點F是第一象限拋物線上的一個動點,過點F作FQ∥AC交x軸于點Q.當(dāng)點F的坐標(biāo)為______時,四邊形FQAC是平行四邊形;當(dāng)點F的坐標(biāo)為______時,四邊形FQAC是等腰梯形(直接寫出結(jié)果,不寫求解過程).

解:(1)∵拋物線y=ax2+bx+c(a≠0)與x軸交于點A(-1,0)、B(3,0),
∴可設(shè)拋物線的解析式為:y=a(x+1)(x-3)
又∵拋物線 與y軸交于點C(0,3),
∴3=a(0+1)(0-3)
∴a=-1
∴y=-(x+1)(x-3)
即拋物線的解析式為:y=-x2+2x+3
∴y=-(x-1)2+4
∴拋物線頂點D的坐標(biāo)為(1,4);

(2)設(shè)直線BD的解析式為:y=kx+b
由B(3,0),D(1,4)得
解得
∴直線BD的解析式為y=-2x+6,
∵點P在直線PD上,點P的橫坐標(biāo)為m
∴點P的縱坐標(biāo)為:-2m+6;

(3)由(1),(2)知:
OA=1,OC=3,OM=m,PM=-2m+6,
∴S四邊形PMAC=S△OAC+S梯形OMPC
=
=
=
,
∴當(dāng)時,四邊形PMAC的面積取得最大值為,
此時點P的坐標(biāo)為(,);

(4)①四邊形PQAC是平行四邊形,如右圖①所示.
過點P作PE⊥x軸于點E,易證△AOC≌△QEP,
∴yP=PE=CO=3.
又∵CP∥x軸,
則點C(0,3)與點P關(guān)于對稱軸x=1對稱,
∴xP=2.
∴P(2,3).
②四邊形PQAC是等腰梯形,如右圖②所示.
設(shè)P(m,n),P點在拋物線上,則有n=-m2+2m+3.
過P點作PE⊥x軸于點E,則PE=n.
在Rt△OAC中,OA=1,OC=3,
∴AC=,tan∠CAO=3,cos∠CAO=;
∵PQ∥CA,
∴tan∠PQE==tan∠CAO=3,
∴QE=n,PQ==n.
過點Q作QM∥PC,交AC于點M,則四邊形PCMQ為平行四邊形,△QAM為等腰三角形.再過點Q作QN⊥AC于點N.
則有:CM=PQ=n,AN=AM=(AC-CM)=(1-n),
AQ===5(1-n).
又∵AQ=AO+OQ=1+(m-n),
∴5(1-n)=1+(m-n),化簡得:n=3-m;
又∵P點在拋物線上,有n=-m2+2m+3,
∴-m2+2m+3=3-m,化簡得:m2-m=0,
解得m1=0(舍去),m2=,
∴m=,n=3-m=,
∴P(,).
故答案為:(2,3);(,).
分析:(1)利用待定系數(shù)法求出拋物線的解析式,然后化為頂點式求出D點坐標(biāo);
(2)利用待定系數(shù)法求出直線的解析式,然后將點P的橫坐標(biāo)m代入,即可用含m的代數(shù)式表示點P的縱坐標(biāo);
(3)本問關(guān)鍵是求出四邊形PMAC面積的表達(dá)式,這個表達(dá)式是關(guān)于P點橫坐標(biāo)的二次函數(shù),再利用二次函數(shù)求極值的方法求出面積的最大值,并求出P點坐標(biāo);
(4)四邊形PQAC為平行四邊形或等腰梯形時,需要結(jié)合幾何圖形的性質(zhì)求出P點坐標(biāo):
①當(dāng)四邊形PQAC為平行四邊形時,如答圖1所示.構(gòu)造全等三角形求出P點的縱坐標(biāo),再利用P點與C點關(guān)于對稱軸x=1對稱的特點,求出P點的橫坐標(biāo);
②當(dāng)四邊形PQAC為平行四邊形時,如答圖2所示.利用等腰梯形、平行四邊形、全等三角形以及線段之間的三角函數(shù)關(guān)系,求出P點坐標(biāo).注意三角函數(shù)關(guān)系部分,也可以用相似三角形解決.
點評:本題綜合考查了諸多重要的知識點,包括:二次函數(shù)的圖象與性質(zhì)、待定系數(shù)法、二次函數(shù)的極值、圖形面積的求法、等腰梯形、平行四邊形、等腰三角形、三角函數(shù)(或相似三角形)等,涉及考點眾多,有一定的難度.本題難點在于第(4)問等腰梯形的情形,注意該種情形下求點的坐標(biāo)的方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

8、如圖,直線y=ax+b與拋物線y=ax2+bx+c的圖象在同一坐標(biāo)系中可能是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y1=-ax2-ax+1經(jīng)過點P(-
1
2
,
9
8
),且與拋物線y2=ax2-ax-1相交于A,B兩點.
(1)求a值;
(2)設(shè)y1=-ax2-ax+1與x軸分別交于M,N兩點(點M在點N的左邊),y2=ax2-ax-1與x軸分別交于E,F(xiàn)兩點(點E在點F的左邊),觀察M,N,E,F(xiàn)四點的坐標(biāo),寫出一條正確的結(jié)論,并通過計算說明;
(3)設(shè)A,B兩點的橫坐標(biāo)分別記為xA,xB,若在x軸上有一動點Q(x,0),且xA≤x≤xB,過Q作一條垂直于x軸的直線,與兩條拋物線分別交于C,D精英家教網(wǎng)兩點,試問當(dāng)x為何值時,線段CD有最大值,其最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y=-ax2+ax+6a交x軸負(fù)半軸于點A,交x軸正半軸于點B,交y軸正半軸于點D,精英家教網(wǎng)O為坐標(biāo)原點,拋物線上一點C的橫坐標(biāo)為1.
(1)求A,B兩點的坐標(biāo);
(2)求證:四邊形ABCD的等腰梯形;
(3)如果∠CAB=∠ADO,求α的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,拋物線的頂點為點D,與y軸相交于點A,直線y=ax+3與y軸也交于點A,矩形ABCO的頂點B在精英家教網(wǎng)此拋物線上,矩形面積為12,
(1)求該拋物線的對稱軸;
(2)⊙P是經(jīng)過A、B兩點的一個動圓,當(dāng)⊙P與y軸相交,且在y軸上兩交點的距離為4時,求圓心P的坐標(biāo);
(3)若線段DO與AB交于點E,以點D、A、E為頂點的三角形是否有可能與以點D、O、A為頂點的三角形相似,如果有可能,請求出點D坐標(biāo)及拋物線解析式;如果不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,拋物線y=ax2+ax+c與y軸交于點C(0,-2),精英家教網(wǎng)與x軸交于點A、B,點A的坐標(biāo)為(-2,0).
(1)求該拋物線的解析式;
(2)M是線段OB上一動點,N是線段OC上一動點,且ON=2OM,分別連接MC、MN.當(dāng)△MNC的面積最大時,求點M、N的坐標(biāo);
(3)若平行于x軸的動直線與該拋物線交于點P,與線段AC交于點F,點D的坐標(biāo)為(-1,0).問:是否存在直線l,使得△ODF是等腰三角形?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案