已知Rt△ABC,AC=BC,點E、F在AB上,且∠ECF=45°,當AF•BE=36時,△ABC的面積為   
【答案】分析:由△ABC為等腰直角三角形可知∠A=∠B=45°,則∠CEB=∠A+∠ACE=45°+∠ACE,∠ACF=∠ACE+∠ECF=∠ACE+45°,可證∠CEB=∠ACF,可證△ACF∽△BEC,利用對應邊的比相等,可求AF•BE=AC•BC,再由直角三角形計算面積.
解答:解:∵△ABC為等腰直角三角形,∴∠A=∠B=45°,
∴∠CEB=∠A+∠ACE=45°+∠ACE,∠ACF=∠ACE+∠ECF=∠ACE+45°,
∴∠CEB=∠ACF,
∴△ACF∽△BEC,
=,即AF•BE=AC•BC=36,
∴△ABC的面積=AC•BC=×36=18.
故答案為:18.
點評:本題考查了等腰直角三角形的性質,相似三角形的判定與性質.關鍵是根據(jù)已知條件證明三角形相似.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

4、已知Rt△ABC∽Rt△A′B′C′,∠C=∠C′=90°,且AB=2A′B′,則sinA與sinA′的關系為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

11、已知Rt△ABC中,c=25,a:b=3:4,則a=
15
,b=
20

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知Rt△ABC中,∠C=90°,AC=8cm,BC=6cm.則其內(nèi)心和外心之間的距離是( 。
A、10cm
B、5cm
C、
5
cm
D、2cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知Rt△ABC的兩條直角邊的長度分別為5cm,12cm,則其斜邊上的中線長為
6.5
6.5
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,每個小方格都是邊長為1個單位的正方形.Rt△ABC 的頂點在格 點上,建立平面直角坐標系后,點A的坐標為(-4,0),點B的坐標為(-1,0).已知Rt△ABC和Rt△A1B1C1關于y軸對稱,Rt△A1B1C1和Rt△A2B2C2關于直線y=-2軸對稱.
(1)試畫出Rt△A1B1C1和Rt△A2B2C2,并寫出A1,B1,C1,A2,B2,C2的坐標;
(2)請判斷Rt△A1B1C1和Rt△A2B2C2是否關于某點M中心對稱?若是,請寫出M點的坐標;若不是,請說明理由.

查看答案和解析>>

同步練習冊答案